
Confidential

A Memory-Efficient Persistent 
Key-Value Store on eNVM SSDs
Arup De & Zvonimir Bandic

© 2017 Western Digital Corporation or its affiliates. All rights reserved

Emerging fast byte-addressable non-volatile memory (eNVM) technologies
such as ReRAM and 3D Xpoint are projected to offer two orders of
magnitude higher performance than flash. However, the existing solid-state
drive (SSD) architecture optimizes for flash characteristics and is not
adequate to exploit the full potential of eNVMs due to architectural and I/O
interface (e.g., PCIe, SATA) limitations. To improve the storage performance
and reduce the host main memory requirement for KVS, we propose a novel
SSD architecture that extends the semantic of SSD with the KVS features
and implements indexing capability inside SSD. It has in-storage processing
engine that implements key-value operations such as get, put and delete to
efficiently operate on KV datasets. The proposed system introduces a
compute channel interface to offload key-value operations down to the SSD
that significantly reduces the operating system, file system and other
software overhead. This SSD achieves 4.96 Mops/sec get and 3.44 Mops/sec
put operations and shows better scalability with increasing number of key-
value pairs as compared to flash-based NVMe (flash-NVMe) and DRAM-
based NVMe (DRAM-NVMe) devices. With decreasing DRAM size by 75%, its
performance decreases gradually, achieving speedup of 3.23x as compared
to DRAM-NVMe. This SSD significantly improves performance and reduces
memory by exploiting the fine grain parallelism within a controller and
keeping data movement local to effectively utilize eNVM bandwidth and
eliminating the superfluous data movement between the host and the SSD.

Abstract

Introduction
• Key-value store is a fundamental  building block for many 

enterprise applications
– Social Networks 
– Online shopping
– Inline storage deduplication

• Key-value store
– Supports simple operations: Get, Put and Delete
– Preferred over traditional relational DBs for its superior 

scalability,  performance and simplicity
– Often implemented through an in-memory index 

structure which points to key-value pairs in storage
– Popular management solution for large volume of 

records
• Emerging NVM technologies are very promising 

– Byte-addressable
– High density
– Low standby power
– DRAM-like performance

Challenges
• The existing SSD architecture optimizes for flash 

characteristics and is not adequate to exploit the full 
potential of emerging NVM technologies due to 
architectural and I/O interface (e.g., PCIe, SATA) 
limitations

• The main memory size imposes a challenging problem in 
scalability and performance of key-value stores due to 
relatively slow growth of DRAM capacity as compared to 
rapidly growing key-value datasets 

• Key-value store has random accesses to the storage and 
the existing memory/storage hierarchy is not adequate for 
this type of application
– Cache miss, TLB flush
– Poor host CPU utilizations
– Large DRAM usage for caching and metadata 

management

The Proposed System 
Architecture

• The proposed system extends the conventional storage 
interface (read and write) with key value store interface 
(get, put, delete)

• It leverages the high internal bandwidth (8 to 10x more 
than the external I/O interface) to improve overall 
system performance and reduce the memory 
requirement
– Improve CPU utilizations
– Reduce host memory usage

• It introduces “Compute Channel” interface to offload 
key-value operations down to the SSD that significantly 
reduces the OS and other software overhead

Bridge CrossBar eNVM
Controller

eNVM

KVS 
Processor

Command 
Buffer

PCIe AXI

AXI

AXI

AXI

H
os

t 
In

te
rf

ac
e

Command 
FIFO

Response 
FIFO

Command 
Scheduler

Allocator

Indexer

Hash 
Controller

DMA Controller

B
ri
dg

e 
in

te
rf

ac
e

CrossBar
AXI interface

KVS Cores

Results

Conclusion
• Propose a memory-efficient key-value store for next-

generation SSDs
• Extended semantic of SSD with key-value store 

features
• Significantly reduced the host CPU and DRAM usage for 

key-value data processing
• Demonstrated in a prototype storage system with 

adequate software and hardware support 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 5 10 15 20 25 30 35

O
pe

ra
ti
on

s/
se

c

Threads

Flash-NVMe DRAM-NVMe Proposed System

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

0 5 10 15 20 25 30 35

O
pe

ra
ti
on

s/
se

c

Threads

Flash-NVMe DRAM-NVMe Proposed System

Get Performance (32 B key and 512 B Value)  Put Performance (32 B key and 512 B Value)  

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

Get/Put = (90/10) Get/Put = (70/30) Get/Put = (50/50)

O
pe

ra
ti
on

s/
S
ec

Workloads

Flash-NVMe DRAM-NVMe Proposed System Proposed System(1/4 Index Mem)

Workloads Performance(32 B key and 512 B Value)  


	A Memory-Efficient Persistent �Key-Value Store on eNVM SSDs

