

Using Texture Compression Hardware for Neural Network Inference Hot Chips 2017

Using ASTC compression for DNN Weights

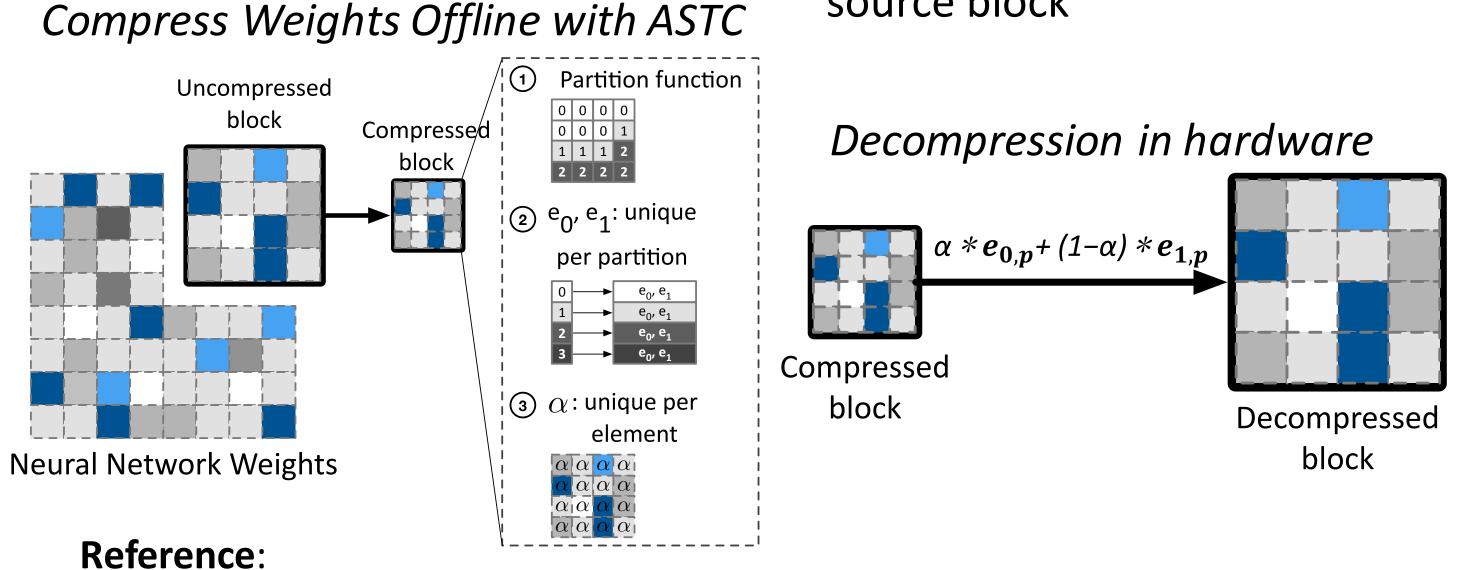
ASTC – Adaptive Scalable Texture Compression

Qualities:

- Asymmetric fast decode
- Hardware support in modern mobile GPUs
- Random access
- Flexible compression from 8bits to 0.22-bits per weight

Encoding:

- Fixed Encoded Block (128-bit)
- Variable Source Block Size 4x4 up to 12x12 region
- Mechanism endpoint definition with interpolation
- Partition Function enables localized endpoints within a source block

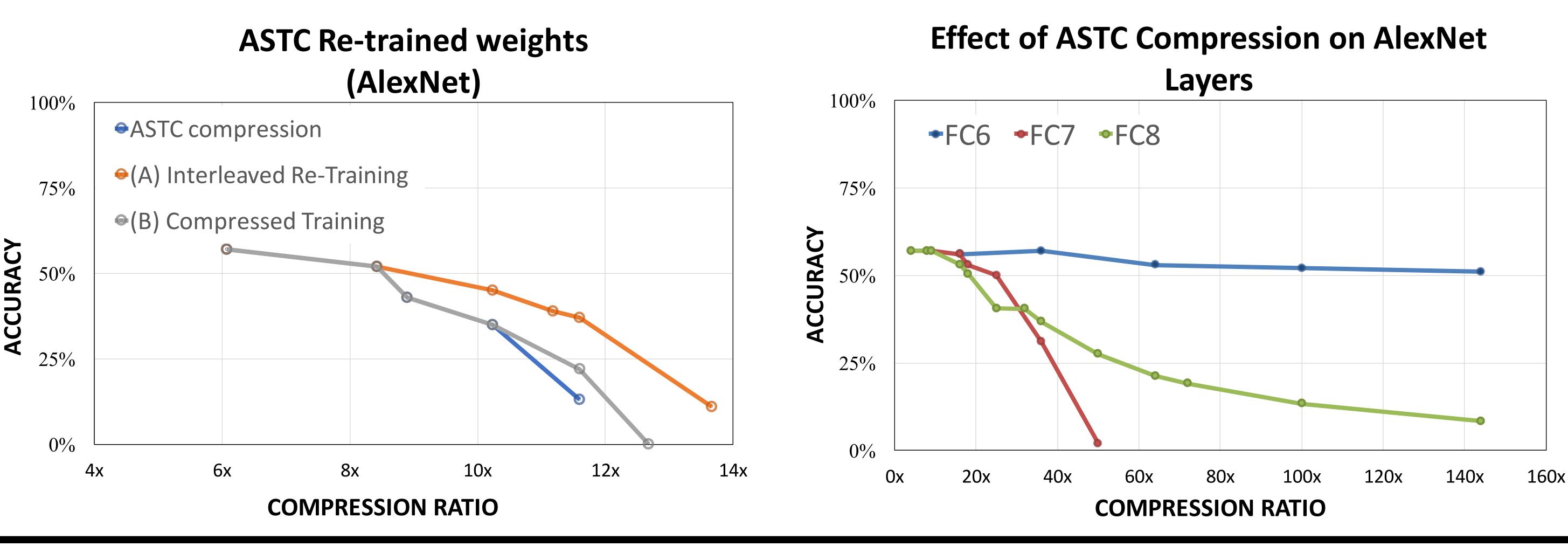


J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adaptive scalable texture compression. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics, EGGH-HPG'12, 2012

Re-Training ASTC Compressed Weights

Two techniques for re-training:

- (A) Interleaving Re-Training: which interleaves re-training iterations with compression (Better accuracy)
- (B) Compressed Training: which trains $(e_{0,p}, e_{1,p})$ and α for a fixed partition function (Faster training)



†Hardik Sharma

Tom Olson

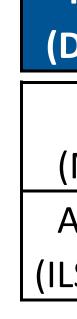
hsharma@gatech.edu

tom.olson@arm.com

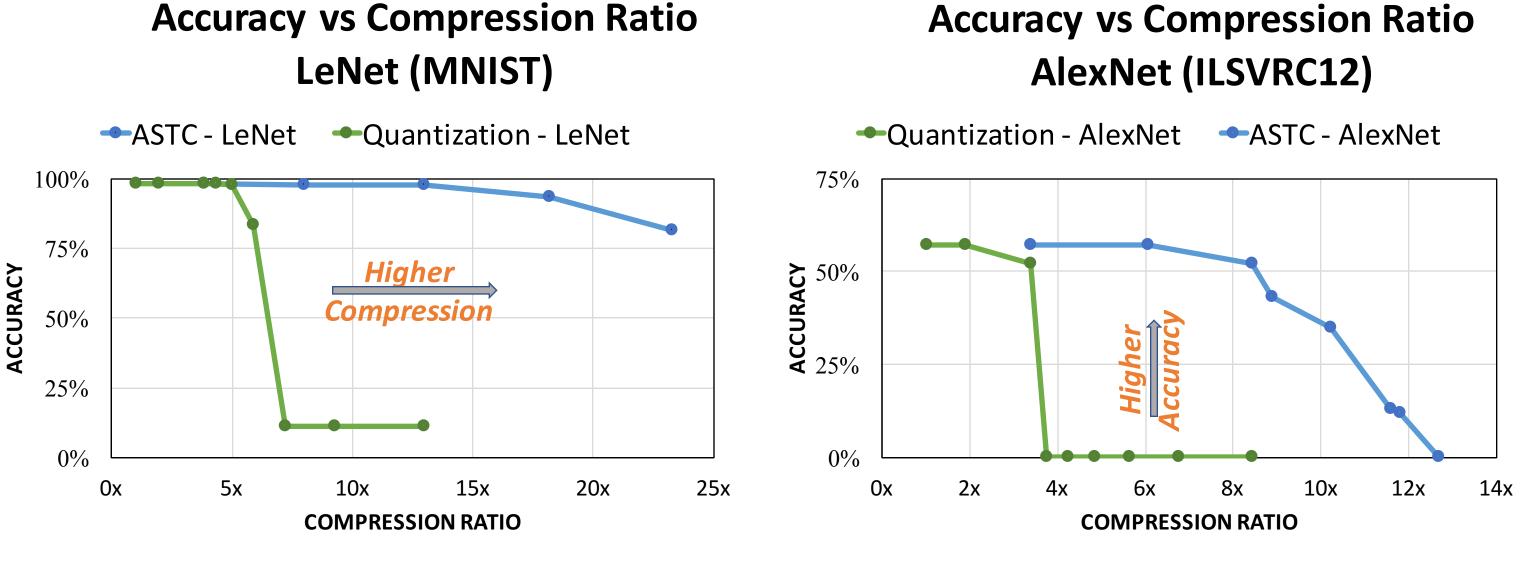
Without re-training:

Compared to quantization, ASTC provides:

- Higher accuracy for fixed compression ratio
- Higher compression ratio for fixed accuracy
- Smooth trade-off between accuracy and compression ratio



LeNet (MNIST)



Sensitivity to ASTC compression

Effect of compression on the three fully-connected layers of AlexNet: FC6 (9216x4096) > FC7 (4096x4096) > FC8 (4096x1000). Thus, different layers can be compressed with different compression ratios to obtain a better accuracy-compression tradeoff.

Alex Chalfin alex.chalfin@arm.com

Model	Original	No Loss in accuracy		
Dataset)	Size	Quant.	ASTC	
LeNet	6.2 MB	5.1x	13x	
(MNIST)	0.2 110	(1.2 MB)	(0.47 MB)	
AlexNet	240 MB	1.9 x	6х	
LSVRC12)		(127 MB)	(39.5 MB)	

With re-training:

- mobile GPUs
- devices

Model

(Dataset)

LeNet

(MNIST)

AlexNet

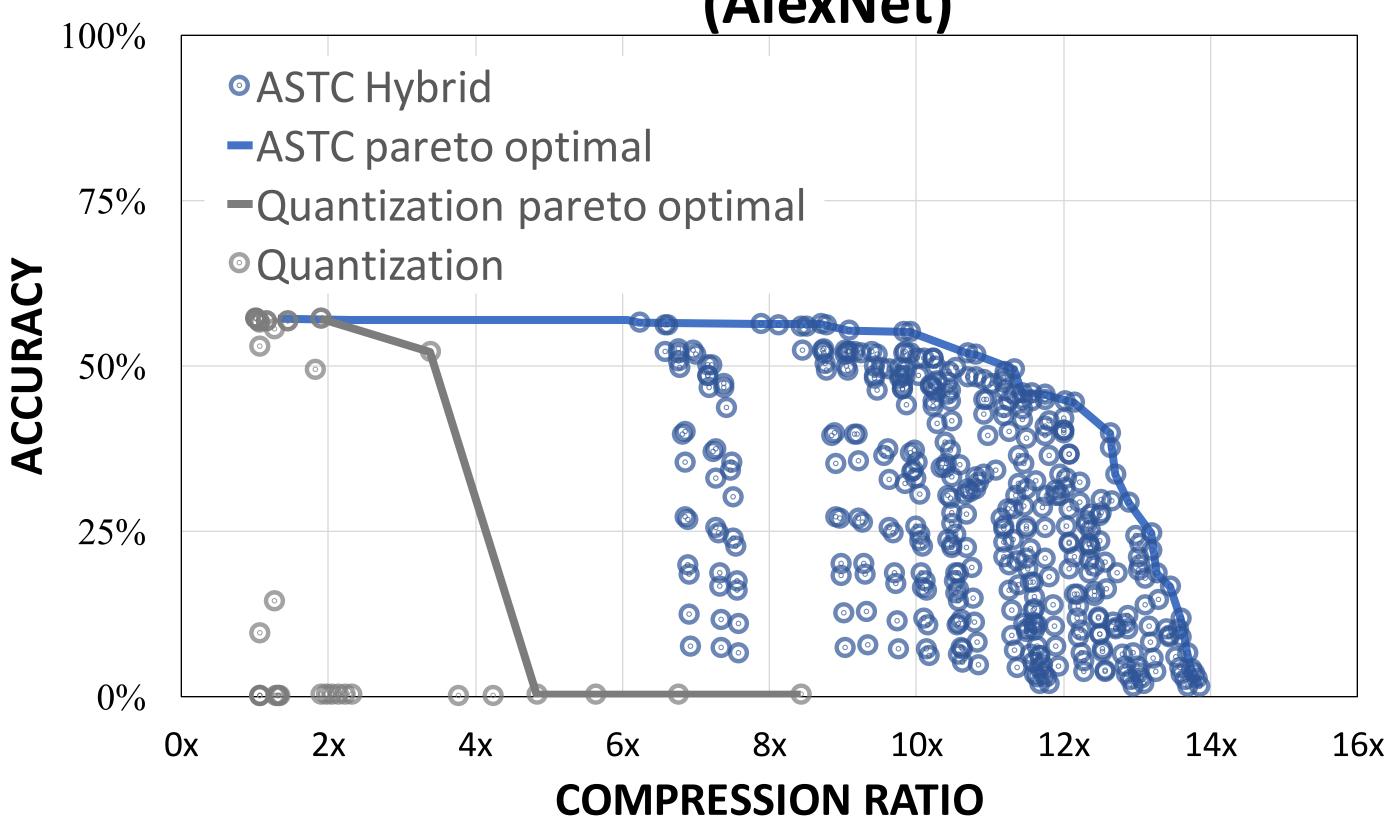
(ILSVRC12

6.2

240

number of points can be large.

compression ratio tradeoff.



Results on LeNet and AlexNet

18x compression for LeNet and **8.7x** compression for AlexNet with no loss in accuracy

Hardware support for ASTC available in most modern

Enable inference for state-of-the-art models in Edge

ginal	No Loss		<5% Loss	
ize	Quant.	ASTC	Quant.	ASTC
MB	5.1x	18.2	5.1x	23.2x
	(1.2 MB)	(0.34 MB)	(1.2 MB)	(0.27 MB)
MB	1.9x	8.7x	3.4x	10.8x
	(127 MB)	(27.6 MB)	(70.8 MB)	(22.2 MB)

Pareto Analysis

When using a different compression parameter for each layer, the

Below, we show the Pareto optimal curve for the accuracy vs

Pareto Analysis: Accuracy vs Compression (AlexNet)

