# In-Data Center Performance Analysis of a Tensor Processing Unit ${ }^{\top M}$ 

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon

## cliffy@google.com

Hot Chips, August 22, 2017

## A Golden Age in Microprocessor Design

- Stunning progress in microprocessor design 40 years $\approx 10^{6} x$ faster!
- Three architectural innovations ( $\sim 1000 x$ )
- Width: 8 ->16->32 ->64 bit (~8x)
- Instruction level parallelism:
- 4-10 clock cycles per instruction to $4+$ instructions per clock cycle (~10-20x)
- Multicore: 1 processor to 16 cores ( $\sim 16 x)$
- Clock rate: 3 to 4000 MHz ( $\sim 1000 \mathrm{x}$ thru technology \& architecture)
- Made possible by IC technology:
- Moore's Law: growth in transistor count (2X every 1.5 years)
- Dennard Scaling: power/transistor shrinks at same rate as transistors are added (constant per mm² of silicon)


## Changes Converge

- Technology
- End of Dennard scaling: power becomes the key constraint
- Slowdown (retirement) of Moore's Law: transistors cost
- Architectural
- Limitation and inefficiencies in exploiting instruction level parallelism end the uniprocessor era in 2004
- Amdahl's Law and its implications end "easy" multicore era
- Products
- PC/Server $\Rightarrow$ Client/Cloud


## End of Growth of Performance?

40 years of Processor Performance


## What's Left?

Since

- Transistors not getting much better
- Power budget not getting much higher
- Already switched from 1 inefficient processor/chip to N efficient processors/chip
Only path left is Domain Specific Architectures
- Just do a few tasks, but extremely well


## What is Deep Learning?

## - Loosely based on (what little) we know about the brain



Slide from "Large-Scale Deep Learning with TensorFlow for Building Intelligent Systems," by Jeff Dean, ACM Webinar, 7/7/16

## The Artificial Neuron


$F$ : a nonlinear differentiable function

## CAT DOG



## Key NN Concepts for Architects

- Training or learning (development) vs. Inference or prediction (production)
- Batch size
- Problem: DNNs have millions of weights that take a long time to load from memory (DRAM)
- Solution: Large batch $\Rightarrow$ Amortize weight-fetch time by inferring (or training) many input examples at a time
- Floating-Point vs. Integer ("Quantization")
- Training in Floating Point on GPUs popularized DNNs
- Inferring in Integers faster, lower energy, smaller
- 2013: Prepare for success-disaster of new DNN apps
- Scenario with users speaking to phones 3 minutes per day: If only CPUs, need 2X-3X times whole fleet
- Unlike some hardware targets, DNNs applicable to a wide range of problems, so can reuse for solutions in speech, vision, language, translation, search ranking, ...
- Custom hardware to reduce the TCO of DNN inference phase by 10X vs. GPUs
- Must run existing apps developed for CPUs and GPUs
- A very short development cycle
- Started project 2014, running in datacenter 15 months later:

Architecture invention, compiler invention, hardware design, build, test, deploy

- Google CEO Sundar Pichai reveals Tensor Processing Unit at Google I/O on May 18, 2016 as "10X performance/Watt"
cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
- TPU Card to replace a disk


## TPU Card \& Package

- Up to 4 cards / server



## 3 Types of NNs

1. Multilayer Perceptrons

- Each new layer applies nonlinear function $F$ to weighted sum of all outputs from prior layer ("fully connected") $x_{n}=F\left(W x_{n-1}\right)$

2. Convolutional Neural Network

- Like MLPs, but same weights used on nearby subsets of outputs from prior layer


## 3. Recurrent NN/"Long Short-Term Memory"

- Each new layer a NL function of weighted sums of past state and prior outputs; same weights used across time steps


## Inference Datacenter Workload (95\%)

| Name | LOC | Layers |  |  |  |  | Nonlinear function | Weights | TPU Ops Weight Byte | $T P U$ <br> Batch <br> Size | $\begin{gathered} \% \\ \text { Deployed } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | FC | Conv | Vector | Pool | Total |  |  |  |  |  |
| MLP0 | 0.1k | 5 |  |  |  | 5 | ReLU | 20M | 200 | 200 | 61\% |
| MLP1 | 1k | 4 |  |  |  | 4 | ReLU | 5M | 168 | 168 |  |
| LSTM0 | 1k | 24 |  | 34 |  | 58 | sigmoid, tanh | 52M | 64 | 64 | 29\% |
| LSTM1 | 1.5 k | 37 |  | 19 |  | 56 | sigmoid, tanh | 34M | 96 | 96 |  |
| CNN0 | 1k |  | 16 |  |  | 16 | ReLU | 8M | 2888 | 8 | 5\% |
| CNN1 | 1k | 4 | 72 |  | 13 | 89 | ReLU | 100M | 1750 | 32 |  |

- Add as accelerators to existing servers
- So connect over I/O bus ("PCle")
- TPU $\approx$ matrix accelerator on I/O bus
- Host server sends it instructions like a

Floating Point Unit

- Unlike GPU that fetches and executes own instructions
- The Matrix Unit: 65,536 (256x256) 8-bit multiply-accumulate units

TPU: High-level Chip Architecture

- Peak: 92T operations/second - 65,536*2*700M
- $\quad>25 \mathrm{X}$ as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory


- 5 main (CISC) instructions


## TPU Architecture,

```
Read_Host_Memory
Write_Host_Memory
Read_Weights
MatrixMultiply/Convolve
Activate(ReLU,Sigmoid,Maxpool,LRN, ...)
```

- Average Clock cycles per instruction: >10
- 4-stage overlapped execution, 1 instruction type / stage
- Execute other instructions while matrix multiplier busy
- Complexity in SW: No branches, in-order issue, SW controlled buffers, SW controlled pipeline synchronization
- Problem: energy/ time for Systolic Execution in repeated SRAM accesses of matrix multiply
. Solution: "Systolic Execution" to compute data on the fly in buffers by pipelining control and data
- Relies on data from different directions
arriving at cells in an array at regular intervals and being combined


## Systolic Execution: Control and Data are pipelined



## Can now ignore pipelining in matrix

Pretend each 256B input read at once, \& they instantly update 1 location of each of 256 accumulator RAMs.


## Relative Performance: 3 Contemporary Chips

| Processor | $m^{2}$ | Clock <br> MHz | TDP <br> Watts | Idle <br> Watts | Memory <br> GB/sec | Peak TOPS/chip |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CPU: Haswell <br> (18 core) | 662 | 2300 | 145 | 41 | 51 | 2.6 | 1.3 |
| GPU: Nvidia <br> K80 (2 / card) | 561 | 560 | 150 | 25 | 160 | -- | 2.8 |
| TPU | $<331^{*}$ | 700 | 75 | 28 | 34 | 91.8 | -- |

*TPU is less than half die size of the Intel Haswell processor
K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process
These chips and platforms chosen for comparison because widely deployed in Google data centers

## GPUs and TPUs added to CPU server

| Processor | Chips/ <br> Server | DRAM | TDP <br> Watts | Idle <br> Watts | Observed <br> Busy Watts <br> in datacenter |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CPU: Haswell (18 cores) | 2 | 256 GB | 504 | 159 | 455 |
| NVIDIA K80 (13 cores) <br> (2 die per card; <br> 4 cards per server) | 8 | 256 GB <br> (host) + <br> $12 G B \times 8$ | 1838 | 357 | 991 |
| TPU (1 core) <br> (1 die per card; <br> 4 cards per server) | 4 | $256 G B$ <br> (host) + <br> $8 G B \times 4$ | 861 | 290 | 384 |

2 Limits to performance:

## 1. Peak Computation

2. Peak Memory Bandwidth (For apps with large data that don't fit in cache)
Arithmetic Intensity (FLOP/byte or reuse) determines which limit Weight-reuse = Arithmetic Intensity for DNN roofline

## Roofline Visual

## Performance Model

TPU Die Roofline
TPU Log-Log


## Haswell (CPU) Die Roofline <br> Haswell Log-Log



K80 (GPU) Die Roofline


## Why so far below Rooflines? (MLPO)

| Type | Batch | 99th\% Response | Inf/s (IPS) | \% Max IPS |
| :---: | :---: | :---: | :---: | :---: |
| CPU | 16 | 7.2 ms | 5,482 | $42 \%$ |
| CPU | 64 | 21.3 ms | 13,194 | $100 \%$ |
| GPU | 16 | 6.7 ms | 13,461 | $37 \%$ |
| GPU | 64 | 8.3 ms | 36,465 | $100 \%$ |
| TPU | 200 | 7.0 ms | 225,000 | $80 \%$ |
| TPU | 250 | 10.0 ms | 280,000 | $100 \%$ |

## Log Rooflines for CPU, GPU, TPU



## Linear Rooflines for CPU, GPU, TPU



## TPU \& GPU Relative Performance to CPU

| Type | MLP |  | LSTM |  | CNN |  | Weighted |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 0 | 1 | 0 | 1 |  |
| GPU | 2.5 | 0.3 | 0.4 | 1.2 | 1.6 | 2.7 | 1.9 |
| TPU | 41.0 | 18.5 | 3.5 | 1.2 | 40.3 | 71.0 | 29.2 |
| Ratio | 16.7 | 60.0 | 8.0 | 1.0 | 25.4 | 26.3 | 15.3 |

# Perf/Watt TPU vs CPU \& GPU <br> - GPU/CPU TPU/CPU TPU/GPU 

$$
100
$$

~80X incremental perf/W of Haswell CPU
Performance/Watt vs. CPU or GPU ~30X incremental perf/W of K80 GPU



- Current DRAM
- 2 DDR3 $2133 \Rightarrow 34$ GB/s
- Replace with GDDR5 like in

Improving TPU: Move "Ridge Point" to the left K80 $\Rightarrow 180$ GB/s

- Move Ridge Point from 1400 to 256


## Revised TPU Raises Roofline

Improves performance 4X for LSTM1, LSTM0, MLP1, MLP0


# Perf/Watt Original \& Revised TPU <br> GPU/CPU <br> TPU/CPU <br> TPU/GPU <br> $\square$ <br> TPU'/CPU <br> TPU'/GPU 



 ystem concatenated several MA-16 chips together and had custom hardware to do activation functions. The Twenty-five SPERT-II workstations, zocecerated by the To custom ASIC, were deployed sarating in 1995 to do
boh NN training and inference for spech recognition [Ass98]. The 40 -Mhz T0 added vector instruxtions to the MIPS instruction set architecture. The eightolane vector unit could produce up to sixteen 32 -bit arithmetic results per
 chack
than asPARC-20 worktstion. They found that 16 bits were insufficient for training, so they used two 16 -bit words
instead, which doubled trining time. To overcome that drawtack, they introdueed "bunches" (batches) of 32 to 1000 data sets to reduce time spent updting weights, which made it faster than training with one word but no
The mere recent Dian Nao family of NN architectures minimizes memory accesses both on the chip and to
The
 were fabricated. The original DianNian uses an anray of 6416 6.bit integer multiply-skecumultate units with 44 KB of
 to keep 36 Mi.B of weights on chip |Chel 14b]. The grol was to have enough memory in a multichip system to avoid external DRAM aceesses. The followeon PuDianNoo (general compunter)) si iamed at move traditional machine kearning algoxihihm beyond DNNS such as support vector machins [Liul 5 ]. Anocher offshoot is ShiDianNao sensor [Dum 5 ].
The Convelution Engine is also focused on CNNs for image processing [Oad 13]. This design deploys 64 10-h multiply-scccumulatar units and customiess a Terssilica processor estimated to run at 800 MHzz in 45 nm . It is hajected to be 8X to $15 X$ more energevvarne
The Fathorn benchmark paper seemingly reports results contradictory to ours, with the GPU rumning inference much faster than the CPU (Adol6]. However, their CPU and GPU are not sevvercclass, the CPU has only four corres
the appliations do not use the CPU's AVX instructions, and there is no responsectime cutoff(see Table 4) [Brol6]. Catapult is the most widely deployed example of using reconfigurability to support DNNs, which many have
 earch, compression, and network interface cards [Pul 5 ]. The TPU project attually began with FPGAs, but we Sandoned them when we saw that the FPGAs of that time were not competaive in performance compared to the
GPUs of that time, and the TPU could be much lower power than (GPUs while being as fast or faster, giving it potertially sggnifxant bencefis over both of FPG As and GPUs.
 MiB of onochip memocy, $11 \mathrm{~GB} / \mathrm{s}$ memory bandwidth, and uses 25 Watts The TPU hass a 700 MHzz clock, 65,536
 was deployed $a t$ larger ssale in 2016 [Cau 16 ].
server [Ovi 15 sa ]. Using the next generation of FPGAs $(14-\mathrm{nm}$ A
 PU die rurs is CNN 40 X to 70 X versus a smmewhat faster server (Tables 2 and 0 ). Perhaps the biggest differenc
 reprogrammablitity comes from soffware for the TPU rather than from firmware for the FPGA.
Recent rescarch, which appeared affer the TPU was deployed, accelerates DNNs by optimizing the cases when
weights and data are very small or zero. Our tight shhedule precluded such optiminations in the TPU, but we saw the same opportunity in our studies. The Efficient Inference Engine is tosed on a first pass that reducest the mumber of
weights by about a fator of 10 [Han15] as a separate step by filtering out very small values and then uses Huffinan encoding to shrink the data even further to improve inference performance [Han16]. Cnvwlutin [Albb6] avoids
multiplixations when an activation input is zro-which it is $44 \%$ of the time prembly in ultiplixations when an activation input is zero-which it is $44 \%$ of the time, presumably in part dues to ReL.U Eyeriss is a novel, low.power dataflow architecture that takes advantage of zeros by runslength encoding data to educe the memory footprint and saves power by avoiding computations when an inpur is zro [Che 16a], Using Eyeriss terminology, a TPU convolutional layer maps C and M to the rows and columnss of the matrix unit, taking
IWN cydes to perfoum one pass. Wth high CM,
It takes RS passes to process the layer, for low CM, a number of echniques reduce passes and improve utilization. (More can be found in the online references

 8 X in part by pruning activation data with small values and in part by quantizing the data [Real 16 ]. [Gup15] looks
16 bit fixed-point arithmetic for training insteal of for infernce. Ohhers leverge the lower precision of DNN


## Related Work <br> - [Che 14a] DMAs data from DRAM to input and weight buffers. They are read by the 3 -stage pipelined N F

DRAM. The NFU has no storage and isn't systolic.
 stores she weight matrix tile while streaming the other input and the pre-activation partial sums. The TPU
docsnnt support tsochastic roundig.

- [Zhal5] is built out of computation units equivalent toa $4 \times 2$ version of the TPU manix unirin wnle
the wiring cost of the crossbars that comnect input and output buffers to these compute engines would be significant. We are surprised that we didn't see architectural support for additional reductions to combine results from compute engines in [Zha15].
 kerer


## 

 And Men




 Nomoly











Nemote



 .uxe: 60.3 .30277.




rament









風A

 Anamy nem








 pion

TPU succeeded because of

- Large matrix multiply unit
- Substantial software-controlled on-chip memory
- Run whole inference models to reduce host CPU
- Single-threaded, deterministic execution model good match to 99th-percentile response time
- Enough flexibility to match NNs of 2017 vs. 2013
- Omission of GP features $\Rightarrow$ small, low power die
- Use of 8-bit integers in the quantized apps
- Apps in TensorFlow, so easy to port at speed
- Inference prefers latency over throughput
- K80 GPU relatively poor at inference (vs. training)
- Small redesign improves TPU at low cost
- 15-month design \& live on I/O bus yet TPU 15X-30X faster Haswell CPU, K80 GPU (inference), < $1 / 2$ die size, $1 / 2$ Watts
- 65,536 (8-bit) TPU MACs cheaper, lower energy, \& faster 576 (32-bit) CPU MACs, 2496 GPU (32-bit) MACs
- 10X difference in computer products are rare


## Questions?

*4/5/17 Google published a blog on the TPU. A 17-page technical paper with same title will be on arXiv.org. (Paper will also appear at the International Symposium on Computer Architecture on June 26, 2017.)
https://cloudplatform.googleblog.com/2017/04/quantifying-the-performance-of-the-TPU-our-first-machine-learning-chip.html

