DNPU: An Energy-Efficient Deep Neural Network Processor with On-Chip Stereo Matching

Dongjoo Shin, Jinmook Lee, Jinsu Lee, Juhyoung Lee, and Hoi-Jun Yoo

Semiconductor System Laboratory School of EE, KAIST

About DNPU v1 – Designed in 2015

- Deep Neural network Processing Unit
- Embedded Deep Neural Network Processing in Mobile Platforms
- Heterogeneous Architecture for Convolutional Layers vs MLP-RNN
- Convolution Processor
 - Mixed workload division method

- MLP: Multi-layer Perceptron RNN: Recurrent Neural Network
- Layer-by-layer dynamic-fixed-point operation with on-line adaptation
- MLP-RNN Processor
 - LUT-based multiplication with weight quantization (Q-table)
- Stereo Matching Processor for Depth Map Generation
- RGB-D 4-ch Processing Support

Targets of DNPU

Embedded Deep Neural Network Processing in Mobile Platforms

Platform: Mobile

 \rightarrow Low-power and high energy efficiency

Task: Vision

– 4.7GB/min (HD 30fps) → Bottleneck for cloud computing

Operation: Real-time & low-latency

 \rightarrow High throughput and embedded computing

Smart Machines & Intelligence-on-Things (IoT)

- Robot, drone, smartphone, wearable devices, home appliances

DNN-dedicated SoC

Why both CNN & RNN?

- CNN: Visual feature extraction and recognition
 - Face recognition, image classification...
- RNN: Sequential data recognition and generation
 - Translation, speech recognition...
- CNN + RNN: CNN-extracted features → RNN input

Image Captioning

CNN: Visual feature extraction RNN: Sentence generation

CNN: Convolutional Neural Network RNN: Recurrent Neural Network

Action Recognition

CNN: Visual feature extraction RNN: Temporal information recognition

Previous works

- Optimized for convolution layers only: [1], [2], [3], [4]
- Optimized for MLP and RNN only: [5]

[1] Y. Chen, ISSCC 2016 [2] B. Moons, SOVC 2016 [3] B. Moons, ISSSC 2017 [4] G. Desoli, ISSCC 2017 [5] M. Price, ISSCC 2017

Hardware for Deep Neural Networks

DNPU: DNN-dedicated SoC

DNPU: DNN-dedicated SoC

Heterogeneous Characteristics

- Convolution Layer (CNN): Computation >> Parameter
- MLP (of CNN), RNN: Computation ≈ Parameter

Heterogeneous Architecture

- Architecture for Convolution Processor
 - Image, kernel, convolution reuse architecture
 - Dynamic fixed-point with on-line adaptation (Feature map reduction)
 - Distributed memory
 - On-chip memory portion: Input > weight > output

Architecture for MLP-RNN Processor

- Matrix multiply architecture
- Weight quantization (Weight reduction)
- LUT-based multiplication (Quantization-table or Q-table)
- On-chip memory portion: Output > weight > input

Overall Architecture

Convolution Processor

- Kernel: Support any size
 - Maximum utilization @ 3xn, 6xn, 9xn, ...: 100%,
 - Minimum utilization @ 1x1: 33%
- Stride: 1, 2, 4
- Channel: Support any size
 Optimized for 16, 32, 64, 128, 256, 512, 1024
- **Pooling**: 2 x 2
- Activation: ReLU

MLP-RNN Processor

- Channel: Support any size
- Activation: ReLU, sigmoid, tanh

Stereo Matching Processor

- Depth level: 64
- Input image: QVGA

Convolution Processor

Mixed Workload Division Method

■ Limited on-chip memory size → Workloads should be divided

Mixed Workload Division Method

	Input Layer Division Method				
	Image Division	Channel Division	Mixed Division		
	Multiple off-chip accesses for weight	Multiple off-chip accesses for partial output	Llee both divisions		
	Having advantage: image >> <mark>weight</mark>	Having advantage: image << weight			
Off-chip Access (W/O Compression Scheme)					
Input Image	$\textbf{W}_{i} \times \textbf{H}_{i} \times \textbf{C}_{i}$	$\mathbf{W}_{i} \times \mathbf{H}_{i} \times \mathbf{C}_{i}$	$\mathbf{W}_{i} \times \mathbf{H}_{i} \times \mathbf{C}_{i}$		
Weight	W _f x H _f x C _i x C _o x Img. Div. #	$\mathbf{W}_{f} \ge \mathbf{H}_{f} \ge \mathbf{C}_{i} \ge \mathbf{C}_{o}$			
Output Image	W _o x H _o x C _o Pooling Size	W _o x H _o x C _o x Ch. Div. # x 2	W _o x H _o x C _o x Ch. Div. # x 2		

VGG-16 Off-chip Memory Access Analysis

→ Mixed division can take lower points

Layer-by-Layer Dynamic Fixed-point

Data distribution in each layer

- Floating-point implementation
 - Large data range, but high cost
- Fixed-point implementation
 - Low cost, but limited data range

Layer-by-Layer Dynamic Fixed-point

Each layer has different WL and FL

 \rightarrow Having floating-point characteristic via layers

WL and FL are fixed in a same layer

Off-line Learning-based Approach (Previous)

Image Data Set

Fraction Length (FL) Sets Set1 – L1: 0, L2: 0, L3:-4 ... Set2 – L1: 1, L2: -1, L3: -5 ... Set3 – L1: 1, L2: -3, L4: -6 ... : Finding FL set which shows the minimum error with given image data set

- Off-line (off-chip) learning-based FL selection
- FL is trained to fit with given image data set
- Selected FL is used for every image at run time

Proposed On-line Adaptation

On-line adaptation-based FL selection

- On-line (on-chip) learning-based FL selection
- FL is dynamically fit to current input image
- \rightarrow No off-chip learning, lower required WL

Performance Comparisons

Image classification results

MLP-RNN Processor

Multiplication

MLP-RNN Processor

Weight Q-table b **MLP Construction FIFO Mapping Table** (or fully-connected layer) 0 Q-table ADD Sigmoid ACC Tree 0 V Reg. & tanh 8-to-1 8-to-8 Element ADD (i_1) Q-table ACC Tree Mult. 0 Internal Reg. Weight Data Index Element Buffer **Buffer** Mult. 1 (8 KB) ADD **Q-table** ACC Element Tree Reg. Mult. 7 $o_m = W_{0m} i_0 + W_{1m} i_1 + \cdots + W_{nm} i_n + b_m$ Vector Element -Q-table 1 ADD Tree 0 $\begin{bmatrix} 1 & i_0 & i_1 & \cdots & i_n \end{bmatrix} \times \begin{bmatrix} b_0 & b_1 & \cdots & b_m \\ W_{10} & W_{11} & \cdots & W_{1m} \\ \vdots & \vdots & \vdots \\ W_{n0} & W_{n1} & \cdots & W_{nm} \end{bmatrix}$ Mult. -wise Mult. $\begin{array}{c|c} W_{00} & W_{10} \\ W_{01} & W_{11} \\ \vdots & \vdots \\ \end{array} \\ & \vdots & \vdots \\ \end{array} \\ \begin{array}{c} i_0 \\ i_1 \\ \vdots \\ \vdots \\ \end{array} \\ \end{array} = 1$ $W_{00}i_0 + W_{10}i_1 + \dots + W_{70}i_7$ $W_{01}i_0 + W_{11}i_1 + \dots + W_{71}i_7$ W x i None $W_{07}i_0 + W_{17}i_1 + \dots + W_{77}i_7$ $W_{07}W_{17}...W_{77}$ 20 of 32

MLP-RNN Processor

MLP-RNN Processor: Weight Quantization

Weight Parameter Value

FC Layer Weight Quantization

	Top-1 Error	Top-5 Error
32bits	42.78%	19.73%
4bits	42.79%	19.73%
2bits	44.77%	22.33%

ImageNet Classification Test

LSTM Layer Weight Quantization

	Perplexity (Lower is beter)	BLEU (Higher is better)
32bits	15.680	55.7 / 37.4 / 24 / 15.7
4bits	15.829	56.7 / 38 / 24.4 / 15.7
2bits	19.298	58.4 / 38.6 / 24 / 14.8

Flickr 8K Image Captioning Test

MLP-RNN Processor: Q-table Construction

Pre-computation with each quantized weight

MLP-RNN Processor: Multiplication with Q-Table

Decode index to load the pre-computed result

Quantization : 16-bit weight → 4-bit index Off-chip Access

: 75% reduction for weight

	16-bit Fixed-point	Q-table
Area	1890	1380
Alou	1000	(per 1 Mult.)
Power	0.32mW	0.068mW
POwer		(per 1 Mult.)
Latency (Unconstraied)	7.1ns	0.49ns

Simulation results on 65nm @ 200MHz, 1.2V

Motivation: Why RGB-D?

- Higher Accuracy then RGB
 - Object detection
 - Image segmentation
 - 3D face recognition
 - Car detection
 - Gesture recognition
 - Visual attention

2011-2022 Market Forecast for 3D Imaging & Sensing Devices

(Source: 3D Imaging & Sensing 2017 report, April 2017, Yole Developpement)

Big Data and Transfer Learning

- ImageNet DB: 14,197,122 images, 21,841 synsets indexed
- Rich visual features can be trained with ImageNet

- Enabling learning for other vision tasks with small dataset
- Consumer 3D imaging devices (Smartphone): Big data
- Transfer learning on RGB-D dataset
- \rightarrow Amplification on RGB-D DNNs will be coming soon

Stereo Matching Processor

Cost Generation with Computational SRAM

Hierarchical Bit-line is used to Minimize the Bit-line Switching

Proposed 4-Square Integral Image

- ¼ Maximum range → data bit width 2-bit reduction
- No additional computation & Mem access cost

l(x,y)

4-way Integral Image Generation

Aggregation

Chip Photograph and Summary

Conclusion

- DNPU: Enabling embedded DNNs in mobile platforms
- Heterogeneous Architecture
 - Convolution Processor
 - MLP-RNN Processor
- Stereo Matching Processor
- RGB-D 4-ch Operation
- Next version DNPU for large input image & large kernel