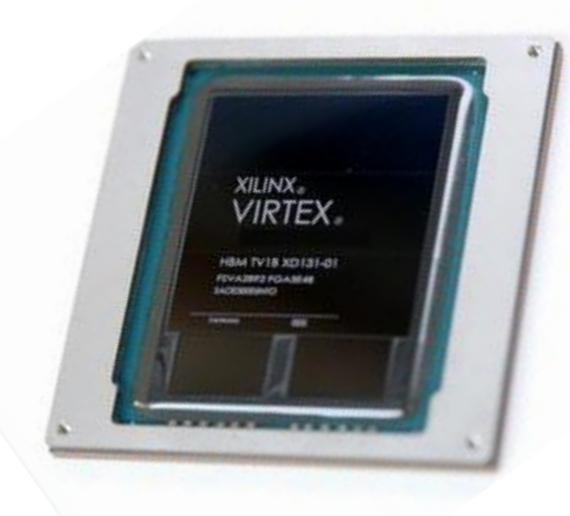
ALL PROGRAMMABLE

5G Wireless • Embedded Vision • Industrial IoT • Cloud Computing

Hot Chips 2017


Xilinx 16nm Datacenter Device Family with

In-Package HBM and CCIX Interconnect

Gaurav Singh

Sagheer Ahmad, Ralph Wittig, Millind Mittal, Ygal Arbel, Arun VR, Suresh Ramalingam, Kiran Puranik, Gamal Refai-Ahmed, Rafe Camarota, Mike Wissolik

Virtex[®] UltraScale+[™] HBM Family (VU3xP)

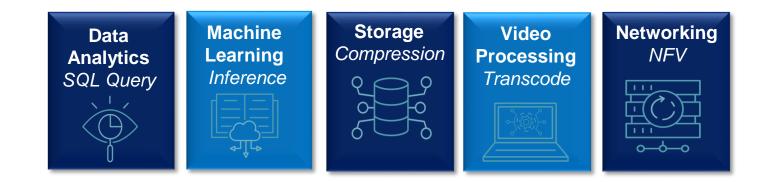
- > 4th Gen 3D IC
 - TSMC CoWoS
 - 3 16nm FPGA die
 - 2 HBM2 Stacks
 - Lidless Package w/ Stiffener
 - 55 mm Package (Die Area: Not Disclosed)
- > 16nm TSMC FF+ FPGA
 - HBM enabled with hard memory controller + hard switch
 - 2.8M System Logic Cells
 - 9024 DSP Blocks (18x27 MACs) @ 891 MHz
 - 341 Mbit FPGA On-Die SRAM
 - 4 DDR4-2666 x72 Channels
 - 96 32.75Gbps Serdes
 - 8 100G Ethernet MACs w/ RS-FEC
 - 4 150G Interlaken MACs
 - 6 PCIe Gen4 x8 Controllers (4 w/ CCIX)
- > 2 HBM2 In-Package DRAM Stacks
 - 1024 Bits @ 1.8 Gbps + ECC
 - 8 Gbyte

XILINX > ALL PROGRAMMABLE.

Virtex[®] UltraScale+[™] HBM Family

			1M. LG	1M LG HBM HBM		3M.LC
		Device Name	VU31P	VU33P	VU35P	VU37P
Logic	System Logic Cells (K)		970	970	1,915	2,860
	CLB Flip-Flops (K)		887	887	1,751	2,615
	CLB LUTs (K)		444	444	876	1,308
Memory	Max. Distributed RAM (Mb)		12.5	12.5	24.6	36.7
	Total Block RAM (Mb)		23.6	23.6	47.3	70.9
	UltraRAM (Mb)		90	90	180	270
	HBM DRAM (Gb)		32	64	64	64
	HBM AXI Ports		32	32	32	32
Clocking	Clock Management Tiles (CMTs)		4	4	8	12
Integrated IP	DSP Slices		2,880	2,880	5,952	9,024
	PCle [®] Gen3 x16 / Gen4 x8		4	4	5	6
	CCIX Ports ⁽²⁾		4	4	4	4
	150G Interlaken		0	0	2	4
	100G Ethernet w/ RS-FEC		2	2	5	8
ι/Ο	Max. Single-Ended HP I/Os		208	208	416	624
	GTY 32.75Gb/s Transceivers		32	32	64	96
Speed Grades	1.5	Extended ⁽¹⁾	-1, -2L, -3	-1, -2L, -3	-1, -2L, -3	-1, -2L, -3
	Footprint ⁽¹⁾ Dimensions (mm)			HP I/O, GTY 32.75Gb/s		
Packaging	H1924	45x45	208, 32			
	H2104	47.5x47.5		208, 32	416, 64	
	H2892	55x55			416, 64	624, 96

EXILINX > ALL PROGRAMMABLE.

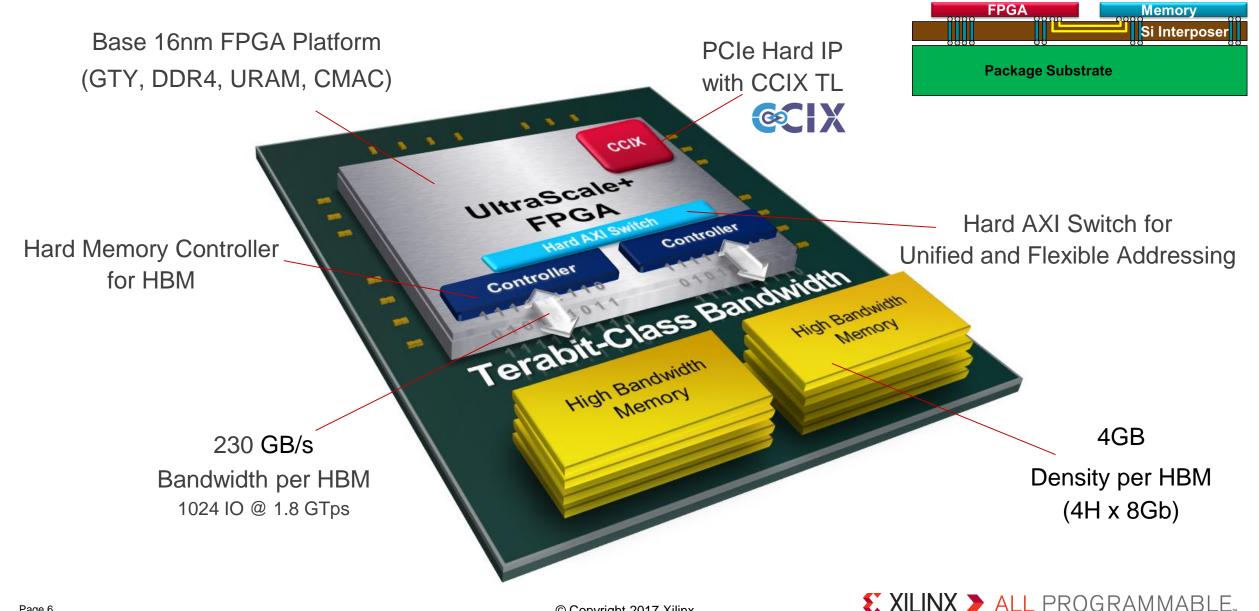

Agenda

- Application Drivers
- HBM: Design Changes
- HBM: Package/Thermal Consideration
- CCIX: What is CCIX
- o CCIX: How CCIX is supported

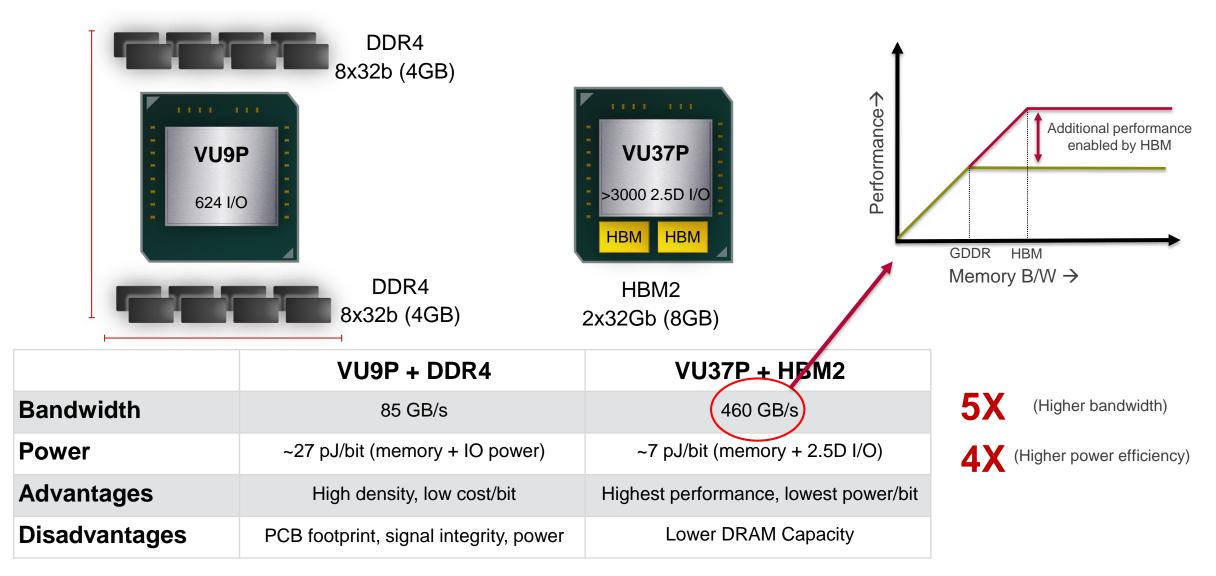
Application Drivers

> Datacenter

- Vision Processing (CNN/DNN)
 - Higher compute density (2.8MLCs, 9024 DSPs – 32 TOPs INT8)
- Natural Language Processing (LSTM, RNN)
 - Memory bandwidth (weights, fullyconnected layers) 3.6Tbps
- Efficient Host interface
 - Multiple PCIe Gen4/CCIX ports
- Seamless heterogenous nodes
 - SVM with CCIX
- Memory expansion (CCIX)


> 400G Networking

- N ports @400G
 - x96 high bandwidth interfaces -32.75Gbps
 - x8 100G MACs, 4x Interlaken MACs
 - 2.8M LCs for P4 packet processing
 - 3.6Tbps HBM2 packet buffering



EXILINX > ALL PROGRAMMABLE,

Virtex[®] UltraScale+[™] HBM (VU+HBM): Key Features

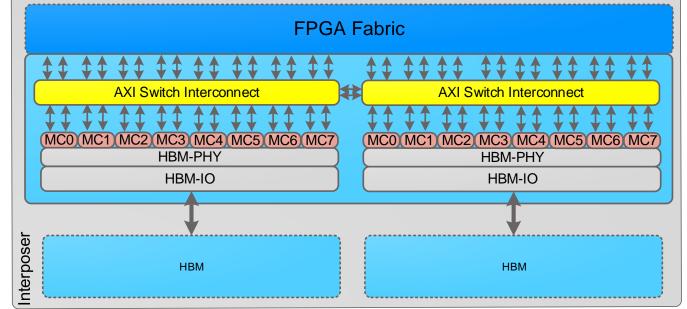
HBM Integration Benefits

HBM Integration

Virtex[®] UltraScale+[™] HBM: HBM Subsystem

Xilinx Virtex UltraScale+ HBM

- Hardened memory controllers
- Hardened switch interconnect w/ 32 AXI ports
- Option to bypass memory controllers and/or switch interconnect


> Pseudo Channels

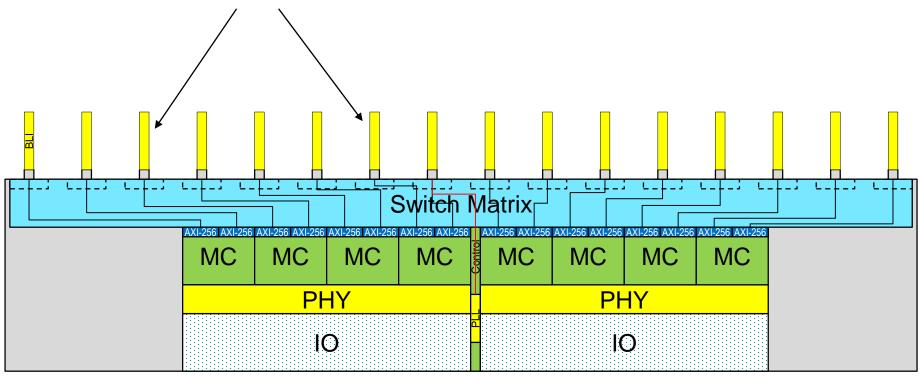
- A pair share command and address bus
- Separate data bus that switches at full frequency
- 16 independent pseudo-channels per HBM
- An HBM pseudo-channel can only access
 1/16th of HBM device address space

Virtex UltraScale+ HBM Interface

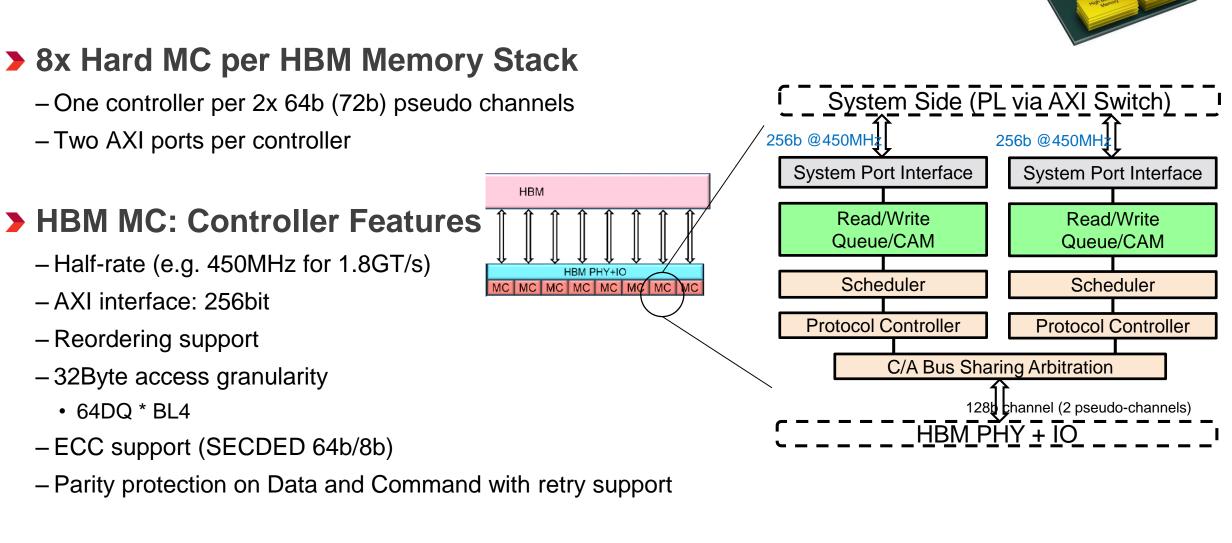
- AXI interfaces to PL to provide unified access across HBM channels
- -AXI provides simultaneous Rd and Wr

XILINX ➤ ALL PROGRAMMABLE.

Bandwidth considerations



> HBM Subsystem Interface to Programmable Logic (PL) Fabric


- 16 256-bit AXI ports per HBM stack (32 ports per FPGA)
- 20,000+ signals @ 450Mhz

> HBM Bandwidth Distributed Throughout FPGA PL Fabric

- "Fingers" into the programmable fabric help distribute bandwidth

EXILINX > ALL PROGRAMMABLE.

Hard HBM Memory Controller (HBM MC)

XII INX > ALL PROGRAMMABLE.

HBM Interface Performance Results

> Example with 4 Masters and 4 **HBM** channels

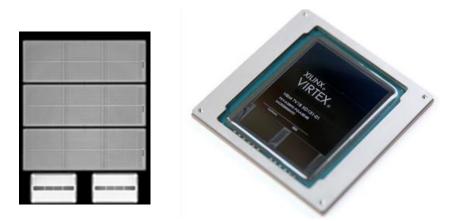
> Uniform random:

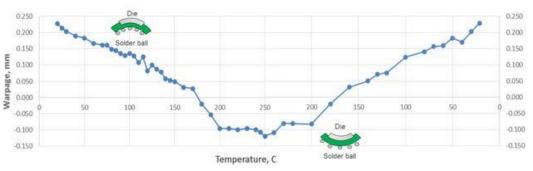
- Every master to all channels, with uniform random distribution
- Channels can be grouped to a 'local' group of 2,4,8,16 or all 32

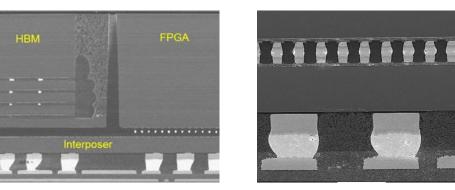
Point to point

- Each master to one channels, but can be any of the channels
- Linear or random addressing within a channel
- Channels can be grouped to a 'local' group of 2,4,8,16 or all 32
- > Legends:
 - UNR = Uniform Random
 - LIN = Linear
 - RND = Random
 - PTP = Point to Point
 - t256B = Transaction size of 256Byte
 - PTP = nearest neighbor
 - PTPW = farthest neighbor
 - RW/RO/WO = Read/Write/Read-only/Write-only

Typical results, synthetic access patterns show higher performance


🗶 XILINX 🕨 ALL PROGRAMMABLE.


Packaging



Package Thermo-Mechanical

- Test Chip addresses HBM integration challenges some examples
 - Incoming HBM residue on micro-bump addressed by IQC and process tuning
 - 55x55mm package co-planarity improved to < 12 mil by appropriate substrate material selection and stiffener design
 - Reliability challenge such as underfill crack addressed by stress tuning and process improvement – passing 1200 hour HTS and 1200 cycles TCB
 - HBM max junction of 95C for long term operation is a challenge for package thermal budget and system level cooling

Passed HTS & TCB Stress

XILINX > ALL PROGRAMMABLE.

HBM Integration – Thermal Design

Temperature [C]

71.31 65.34

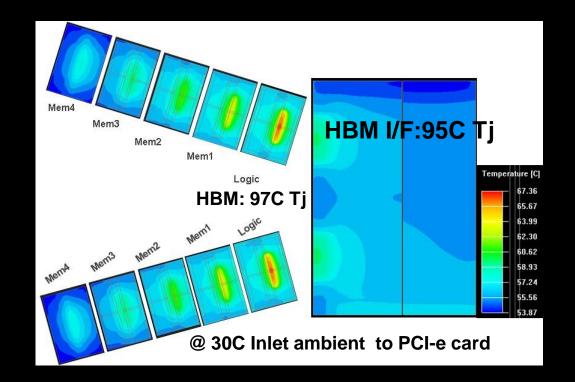
59.37 53.40

47.43

41.46

35.49

29.52

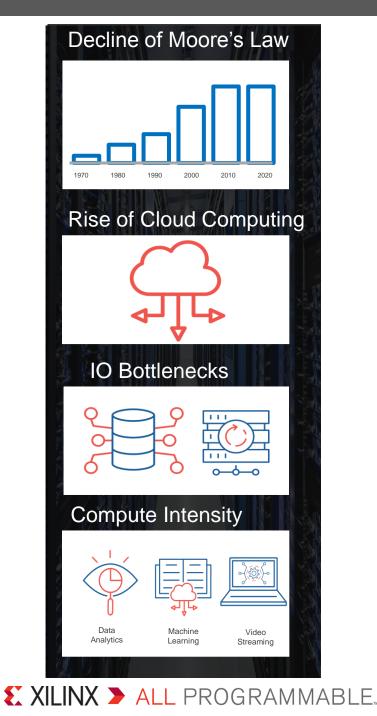

23.55

PCI-e card: Full length/full height Card power (4x VU3xP): 320W Airflow: 15CFM Typical ambient 30C

- HBM power map provided by vendors
- Thermal model can be done in Flotherm or IcePak environments for example

HBM can be <u>97C Tj</u> and HBM I/F 95C Tj @30C A HBM gradient ~10C (~2C/Layer)

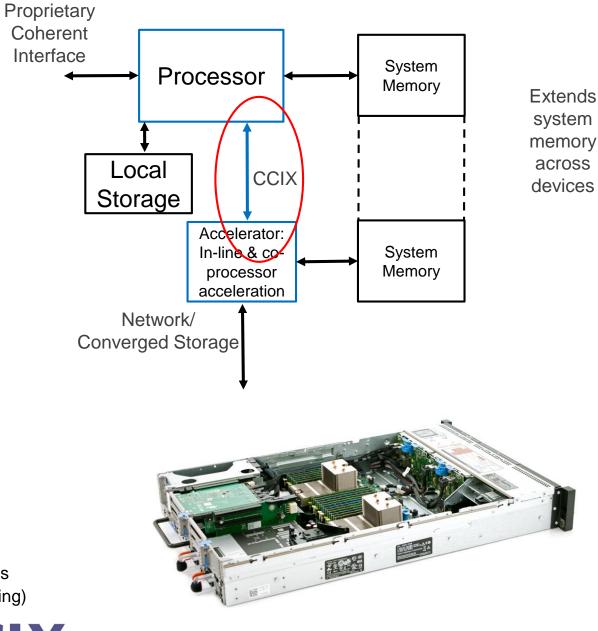
Air cooling requires attention to heat-sink design HBM 8-Hi will be a challenge



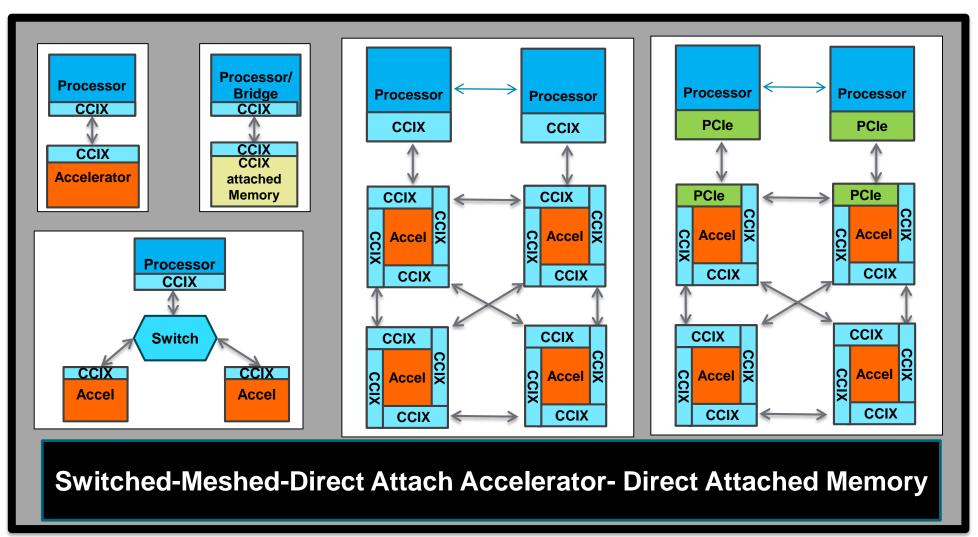
EXILINX > ALL PROGRAMMABLE.

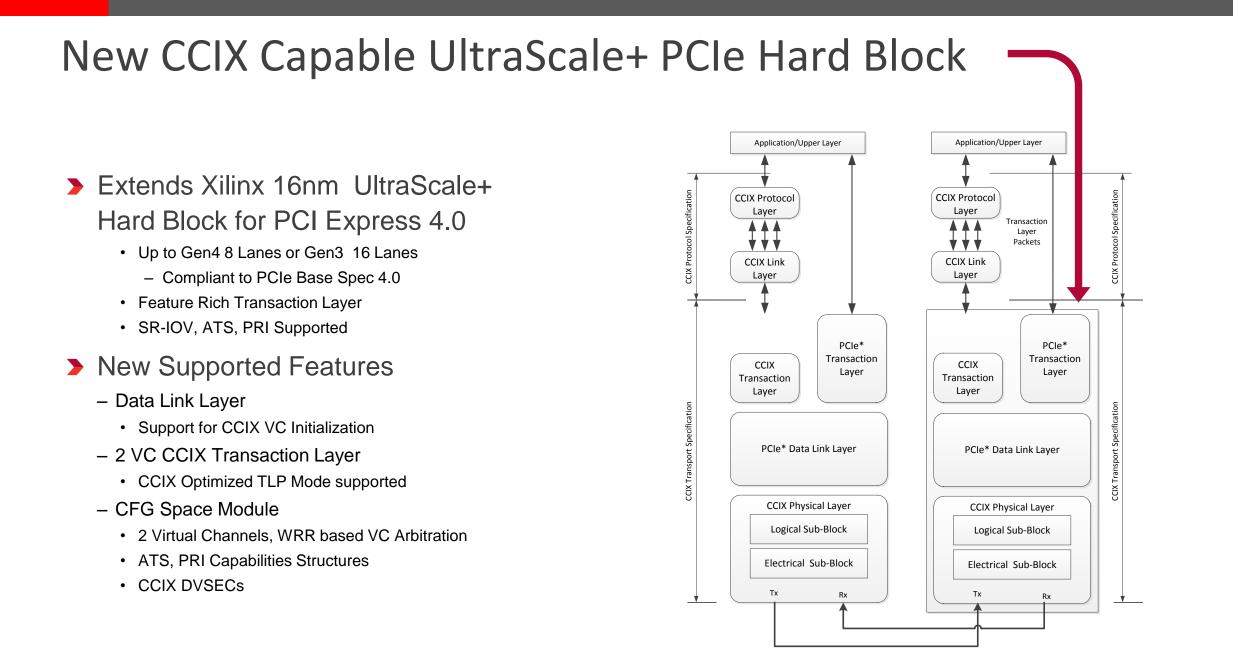
Why CCIX?

- Moore's law is slowing down
- > Heterogenous computing is the solution
 - CPU + FPGA
 - CPU + GPU
 - CPU + Intelligent NIC
- There is a need for an efficient interconnect for this heterogenous system
- > Characteristics of this interconnect
 - − High bandwidth: $25G \rightarrow 32G \rightarrow 56G \rightarrow 100G$ per lane
 - Low latency
 - Leverage existing ecosystem where possible
 - Optimized for short transfers as well
- > But why coherency?
 - Simplified programming and data sharing model
 - Lower latency (no-driver)
 - Accelerator thread has same access to memory as CPU thread (Democratize memory access)



CCIX Summary


- > High bandwidth IO
 - 25Gbps Gen1 (specification complete)
 - Backward compatible to 16Gbps and lower speeds
- > Full capability in the accelerator
 - Accelerator-processor peer processing (homenode)
 - Caching capability
 - Memory expansion
- > Flexible topology
 - 1 CPU to 1 accelerator
 - Option to connect multiple accelerators
- > Optimized for multi-chip transfers
 - Low overhead header format
 - Message packing and simplified messaging
 - Request and Snoop chaining
 - Port Aggregation
- > Full Ecosystem support
 - Interface IP available from Cadence, Synopsys
 - Coherent controllers from ARM, Netspeed, ArterisIP
 - Verification IP from Cadence, Synopsys, Avery Design Systems
 - How to join: www.ccixconsortium.com (33 members and counting)



EXILINX > ALL PROGRAMMABLE.

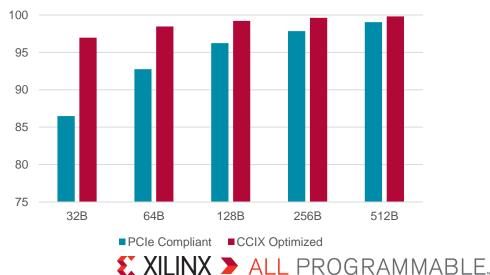
System Topologies

XILINX > ALL PROGRAMMABLE.

New CCIX Capable UltraScale+ PCIe Hard Block

Extends Xilinx 16nm UltraScale+ Hard Block for PCI Express 4.0

- Up to Gen4 8 Lanes or Gen3 16 Lanes
 - Compliant to PCIe Base Spec 4.0
- Feature Rich Transaction Layer
- SR-IOV, ATS, PRI Supported


New Supported Features

- Data Link Layer
 - Support for CCIX VC Initialization
- 2 VC CCIX Transaction Layer
 - CCIX Optimized TLP Mode supported
- CFG Space Module
 - 2 Virtual Channels, WRR based VC Arbitration
 - ATS, PRI Capabilities Structures
 - CCIX DVSECs

CCIX Transport Latency

Virtex[®] UltraScale+[™] HBM : Summary

- > Scalable Family: 4 Devices 1-3 FPGA die, 1-2 HBM2 Stacks
- > 4 Tbps (HBM2 + DDR4-2666): Weight Bandwidth for ML
- > 32 TOPs INT8: Machine Learning Operations
- > 3.6 Tbps HBM2: Packet Buffering for 400G Networking
- Coherent Low Latency Host Interface: CCIX
- Switchless Peer 2 Peer SVM: CCIX Heterogeneous Scale-Up
- > 96 lanes of PCIe G4: 6 PCIe controllers, 4 CCIX controllers

XILINX > ALL PROGRAMMABLE.