Q@ thinci

Graph Streaming Processor

A Next-Generation Computing Architecture

Val G. Cook — Chief Software Architect

Satyaki Koneru — Chief Technology Officer
Ke Yin — Chief Scientist

Dinakar Munagala — Chief Executive Officer

Introduction e thinci

* THINCI, Inc. “think-eye” is 5-year-old strategic/venture-backed
technology startup

* Develop silicon for machine learning, computer vision and other

strategic parallel workloads
* Provide innovative software along with a comprehensive SDK
* 69-person team (95% engineering & operations)

* Key IP (patents, trade secrets)

— Streaming Graph Processor
— Graph Computing Compiler

* Product Status

— Early Access Program started Q1 2017
— First edition PCle-based development boards will ship Q4 2017

Architectural Objective & thinci

Exceptional efficiency via balanced application
of multiple parallel execution mechanisms

Levels of Parallelism Key Architectural Choices

* Task Level Parallelism * Direct Graph Processing

* Thread Level Parallelism * Fine-Grained Thread Scheduling
* Data Level Parallelism * 2D Block Processing

* Parallel Reduction Instructions
* Instruction Level Parallelism ¢ Hardware Instruction Scheduling

| Task Level Parallelism

Direct Graph Processing

Task Graphs Q@ thinci

* Formalized Task Level Parallelism
— Graphs define only computational semantics
— Nodes reference kernels
— Kernels are programs
— Nodes bind to buffers
— Buffers contain structured data
— Data dependencies explicit

* ThinCl Hardware Processes Graphs Natively
— A graph is an execution primitive
— A program is a proper sub-set of graph

Graph Based Frameworks @@ thinci

e Graph Processing or Data Flow Graphs
— They are a very old concept, for example Alan Turing’s “Graph Turing Machine”.
— @Gaining value as a computation model, particularly in the field of machine learning.

* Graph-based machine learning frameworks have proliferated in recent years.

Machine Learning Frameworks TensorFlow
Lasagne
Chainer
CNTK
maxDNN MxNet
Neural Designer leaf
cuDNN CIER =
Caffe MatConvNet
. " ~ Apache
Kaldi Torch BIDMach eeplearningd) ¢\ca Caffe2

2011 2012 2013 2014 2015 2016 2017

Streaming vs. Sequential Processing

Q@ thinci

e Sequential Node Processing

— Commonly used by DSPs and GPUs

— |Intermediate buffers are written
back and forth to memory

— Intermediate buffers are generally
non-cacheable globally

— DRAM accesses are costly
* Excessive power
* Excessive latency

e Graph Streaming Processor

— Intermediate buffers are small
(~¥1% of the original size)

— Data is more easily cached

— Benefits of significantly reduced
memory bandwidth
* Lower power consumption

* Higher performance

Sequential Execution Streaming Execution

Node A NodeB NodeC NodeD

b
Lo

time time

Nodes A,B,C,D

A\

| Thread Level Parallelism
MW\/\/\NWW Fine-Grained Thread Scheduling

Fine-Grained Thread Scheduling Q@ thinci

e Thread Scheduler

— Aware of data
dependencies

— Dispatches threads when:
* Resources available

* Dependencies satisfied

— Maintains ordered
behavior as needed

— Prevents dead-lock

e Supports Complex Scenarios
— Aggregates Threads
— Fractures Threads

Graph Execution Trace

 Threads can execute from all nodes of the graph simultaneously
 True hardware managed streaming behavior

Q Graph Execution Trace

_ _NON _
__NON _

“" Thread life-span

)
e)
o 700
=
S~
-
C o
3
(@]
O ..
©
©
v
o Al
<
l—

THINCI, Inc. ® www.thinci.com August 2017

~ | Data Level Parallelism

A N 2D Block Processing
N ot T Parallel Reduction Instructions

2D Block Processing/Reduction Instructions @ thinc

* Persistent data structures are
accessed in blocks

e Arbitrary alignment support
* Provides for “in-place compute”
e Parallel reduction instructions
support efficient processing
— Reduced power
— Greater throughput
— Reduced bandwidth

* Experience better scaling across
data types vs. the 2x scaling of
traditional vector pipelines

|Instruction Level Parallelism

Hardware Instruction Scheduling

Hardware Instruction Scheduling Qe thinci

e Scheduling Groups of Four Processors

Vector Pipeline

Thread State Register Files

— Hardware Instruction Picker
— Selects from 100’s of threads
— Targets 10’s of independent pipelines

Scalar Pipeline

Custom Arithmetic

Instruction Scheduler

Flow Control

Instruction
Decode

Memory Ops.

Move Pipeline

Thread Spawn

|Programming Model

Programming Model Q@ thinci

e Fully Programmable
— No a-priori constraints regarding data types, precision or graph topologies
— Fully pipelined concurrent graph execution
— Comprehensive SDK with support for all abstraction levels, assembly to frameworks
e Machine Learning Frameworks
— TensorFlow
— Caffe
— Torch
* OpenVX+ OpenCL C/C++ Language Kernels (seeking khronos conformance post i)
— Provides rich graph creation and execution semantics
— Extended with fully accelerated custom kernel support

Results

Q@ thinci

* Arithmetic Pipeline Utilization
— 95% for CNN’s (vGa1s, 8-bit)

e Physical Characteristics

— TSMC 28nm HPC+

— Standalone SoC Mode

— PCle Accelerator Mode

— SoC Power Estimate: 2.5W

