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Introduction

• THINCI, Inc. “think-eye” is 5-year-old strategic/venture-backed 

technology startup

• Develop silicon for machine learning, computer vision and other 

strategic parallel workloads

• Provide innovative software along with a comprehensive SDK

• 69-person team (95% engineering & operations)

• Key IP (patents, trade secrets)
– Streaming Graph Processor
– Graph Computing Compiler

• Product Status
– Early Access Program started Q1 2017
– First edition PCIe-based development boards will ship Q4 2017
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Levels of Parallelism

• Task Level Parallelism

• Thread Level Parallelism

• Data Level Parallelism

• Instruction Level Parallelism

Key Architectural Choices

• Direct Graph Processing

• Fine-Grained Thread Scheduling

• 2D Block Processing

• Parallel Reduction Instructions

• Hardware Instruction Scheduling

Architectural Objective

Exceptional efficiency via balanced application 
of multiple parallel execution mechanisms
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Task Level Parallelism

Direct Graph Processing
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Task Graphs

• Formalized Task Level Parallelism

– Graphs define only computational semantics

– Nodes reference kernels

– Kernels are programs

– Nodes bind to buffers

– Buffers contain structured data

– Data dependencies explicit

• ThinCI Hardware Processes Graphs Natively

– A graph is an execution primitive

– A program is a proper sub-set of graph
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Graph Based Frameworks

• Graph Processing or Data Flow Graphs

– They are a very old concept, for example Alan Turing’s “Graph Turing Machine”.

– Gaining value as a computation model, particularly in the field of machine learning.

• Graph-based machine learning frameworks have proliferated in recent years.
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Streaming vs. Sequential Processing

• Sequential Node Processing
– Commonly used by DSPs and GPUs

– Intermediate buffers are written 
back and forth to memory

– Intermediate buffers are generally 
non-cacheable globally

– DRAM accesses are costly

• Excessive power

• Excessive latency

• Graph Streaming Processor
– Intermediate buffers are small 

(~1% of the original size)

– Data is more easily cached

– Benefits of significantly reduced 
memory bandwidth

• Lower power consumption

• Higher performance
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Thread Level Parallelism

Fine-Grained Thread Scheduling
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Fine-Grained Thread Scheduling

• Thread Scheduler

– Aware of data 
dependencies

– Dispatches threads when:

• Resources available

• Dependencies satisfied

– Maintains ordered 
behavior as needed

– Prevents dead-lock

• Supports Complex Scenarios

– Aggregates Threads

– Fractures Threads
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Graph Execution Trace

• Threads can execute from all nodes of the graph simultaneously

• True hardware managed streaming behavior
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Data Level Parallelism

2D Block Processing
Parallel Reduction Instructions
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2D Block Processing/Reduction Instructions

• Persistent data structures are 
accessed in blocks

• Arbitrary alignment support

• Provides for “in-place compute”

• Parallel reduction instructions 
support efficient processing

– Reduced power

– Greater throughput

– Reduced bandwidth

• Experience better scaling across 
data types vs. the 2x scaling of 
traditional vector pipelines
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Instruction Level Parallelism

Hardware Instruction Scheduling
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Hardware Instruction Scheduling

• Scheduling Groups of Four Processors

– Hardware Instruction Picker 

– Selects from 100’s of threads

– Targets 10’s of independent pipelines
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Programming Model
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Programming Model

• Fully Programmable

– No a-priori constraints regarding data types, precision or graph topologies

– Fully pipelined concurrent graph execution

– Comprehensive SDK with support for all abstraction levels, assembly to frameworks

• Machine Learning Frameworks

– TensorFlow

– Caffe

– Torch

• OpenVX + OpenCL C/C++ Language Kernels (Seeking Khronos conformance post Si)

– Provides rich graph creation and execution semantics

– Extended with fully accelerated custom kernel support
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Results

• Arithmetic Pipeline Utilization

– 95% for CNN’s (VGG16, 8-bit)

• Physical Characteristics

– TSMC 28nm HPC+

– Standalone SoC Mode

– PCIe Accelerator Mode

– SoC Power Estimate: 2.5W


