
XPU – A Programmable FPGA

Accelerator for Diverse Workloads

Jian Ouyang,1 (ouyangjian@baidu.com)

Ephrem Wu,2 Jing Wang, 1Yupeng Li, 1 Hanlin Xie1

1Baidu, Inc. 2Xilinx

Outlines

• Background - FPGA for emerging applications
– Potentials of FPGA for AI and big data

– Overviews of FPGA accelerators in real system

– Challenges of using FPGA for diverse workloads

• XPU
– Motivation : A programmable FPGA Accelerator for diverse workloads

– Architecture

– Program model

– Implementation

– Evaluation

• Conclusion

1

Background - Potentials of FPGA for AI and big data

• AI
– Convolution

– Matrix
multiplication

– Activations

– Pooling…

• Data analysis
– Compression/d

ecompression

– Filter

– sort

– Join

– Aggregation …

• Computing
– Massive MAC arrays

– Sophisticated logic
operations

– Math functions

• Memory access
– high bandwidth off-

chip memory

– High bandwidth and
low latency on-chip
memory

– Sophisticated access
pattern

• IO
– High bandwidth

– Diversity

Kernels Architecture support FPGA

• Computing
– Thousands DSP

– Millions LUT

– Flex data path

• Memory access
– off-chip :

DDR4/HMB

– on-chip : tens
MB SRAM

– Flex access
pattern

• IO
– PCIe

– SERDES,
GPIO…

FPGA has

huge

potentials

for AI and

big data

2

Background - Overviews of FPGA accelerators in real system

Hot Chips 2014 Hot Chips 2016

3

Background - Overviews of FPGA accelerators in real system

Baidu FPGA

Data center Cloud Autonomous

driving

4

Background - Challenges of using FPGA for diverse workloads

• Most applications contain diverse workloads

preprocessing

• Diverse workloads

• Computing intensive

• Memory bound

• Rule-based

• Variety of kernels

• Several big kernels, such as convolution, matrix multiplications

• Lots of small kernels, such as activations, element-wise operations, openCV kernels

5

Background - Challenges of using FPGA for diverse workloads

• FPGA has potential to support all kinds of workloads

– Very low and predictable latency

– Massive parallel computing

– High memory bandwidth

• But, FPGA is not good at supporting diverse workloads

– Hardware-reconfigurable

• Dedicated logic for specific functionalities

– Lacks flexible programmability

• Specific circuit

• Hardware reconfigurable

6

XPU – motivations

• Aim at specific
workloads

• High efficiency

• Lacks programmability

Traditional FPGA Accelerator

• Aimed at diverse workloads
– computing intensive

– rule-based

• High efficiency, flexible and

performance

XPU

• Aim at general
workloads, especially
rule- base workloads

• High flexibility

Traditional CPU

• Aim at parallelism

workloads

• High performance

GPU

7

XPU – design choices

• High efficiency

– Customized circuit for specified workloads

– Example: SDA

• High flexibility

– ISA based core

– Customized for rule-based workloads

• High performance

– Many cores for parallelism workloads

8

XPU – architecture

• Many tiny cores
– Instruction set based Software-

programmable

– No OS, No Cache, domain specific ISA

– Flexible to serve diverse workloads

• Customized logic
– Hardware-reconfigurable

– Achieve high performance efficiency

• Resource allocation is
reconfigurable
– Configure the ratio of cores vs. custom

logic depending on applications
requirements

Multi-port MC

Many tiny cores
Customized

logic

DMA

DDR4 DDR4 DDR4

9

XPU – architecture of tiny cores

Core

cluster0

Core

cluster1

Core

clusterN

Multi-port MC

• Each 32 cores are clustered
• Data locality and synchronization

• Easy to route and place

• 32 KB shared multi-bank memory

• Shared SFA (special function accelerator)

10

XPU –architecture of tiny cores

• MIPS-like instruction set

• Private scratchpad memory

– 16 or 32KB

• Pipeline

– Designed for low latency

– 4 stage

– BHT

BHT/Fetch/I_buf

decode Q

Decode/RF

Issue Q

WB Q

ALU/load/store

CORE

Scratchpad

memory

11

XPU – program model

• Program model is similar

to traditional PCIe

accelerator

– GPU or SDA

• Customized logic

– Informative commands

• Tiny cores

– Similar to traditional CPU

– Controlled by host

// rule-base,

// offload by tiny cores

func1();

// computing intensive

// offload by customized logic

func2();

// computing intensive,

// offload by tiny cores

func3();

1: written func1() and func3() in

ASM

2: compile ASM to binary code

by XPU tool chain

load_func1_bin();

load_func3_bin();

Func1_fpga_xpu();

Func2_fpga_logic();

Func3_fpga_xpu();

Library and header file of

functions in customized logic

Compile and

run in Linux

Step1:

• partition the workloads

Step2:

• Write the XPU code

• Call the dedicated logic

functions

Step3:

• compile

• run

12

XPU – implementation

• One tiny core
– 1252 LUT

– 1230 FF

– 4 DSP

– 5 BRAM

• Many tiny core
– Resource scales linear as core number

– 256 core consume 25% LUT and 15% DSP on VU9P

• Customized logic
– SDA-II, 5120 DSP, 16bit fixed point, 600Mhz

– 6.144Tops

13

XPU evaluation - setup

• Host

– E5-2670, 2.60GHz, 128GB memory

– Linux system

• XPU

– VU9P

– 256 tiny core, 600MHz

– SDA-II for deep learning, 16bit fixed point, 600MHz, 6.144Tops

– PCIE 3.0x16

– 4x72bit DDR4, 2400MHz

14

XPU evaluation – setup

• Case 1: simple micro benchmark

• Case 2: computing intensive

• Case 3: regular memory access

• Case 4: random memory access

• Case 5: rule-based

15

XPU evaluation – case 1

• 1 to 100 accumulation

– CPU code, gcc -O2 compiling, ~310 CPU cycle

– XPU single core, ~300 cycle

– XPU has same pipeline efficiency as X86 for simple program

sum=0;

for(i=0;i<100;i++)

sum = sum+i ;

16

XPU evaluation – case 2 and case 3

• Case 2: Softmax
– channel=2，height=640， width=640

– Data format : [height][width][channel]

– CPU single core: 20.4413ms

– XPU single core : 12266100 cycles, @600Mhz, ~ 20.5ms

• Case 3: Slice
– channel_in=4， channel_out_0=2， channel_out_1=2， height=640， width=640

– Data format : [height][width][channel]

– CPU single core : 3.77981ms

– XPU single core : 1054100 cycle, @600MHz, ~1.756ms

• conclusion
– XPU has similar efficiency as X86 core for computing intensive and regular memory access

workload

17

XPU evaluation – case 4

• Kernels from computer vision

• Input: 100k pixels(each has x, y, z and pi)

• CPU single core : 18ms

• XPU single core : 433990000 cycles, ~720ms

• This workload is random memory access bound
– need to improve the XPU memory control for this case

Pseudocode:

for(each pixel)

{

int idx = y * W +x;

data_A[idx] = z;

data_B[idx] = atan2(y,x);

data_C[idx] = pi;

data_D[idx] = sqrt(x*x,y*y);

}

18

XPU evaluation – case 5

• A kernel from computer vision applications

– Rule based

• Performance of one data set

– CPU single core : 5 K cycles

– XPU single core

• 4.4K cycles

– Similar efficiency for rule based

workload

19

XPU evaluation – scalability discussion

• Case 2: Softmax
– 1 core : 12266100 cycles

– 8 core: 2104300 cycles

– 5.82x

• Case 3: Slice
– 1 core : 1054100 cycles

– 4 core: 468100 cycles

– 2.25x

• Case 5
– Task level parallelism without synchronization among tasks

– 256 core can achieve about 64x faster than CPU core,

– and 8x than 8 core XEON,

– 25x power efficiency than CPU (25w XPU vs. 80w CPU)

• Conclusion
– The scalability of XPU for workloads with data synchronization should be improved further

– The scalability of XPU for workloads without data synchronization is linear as core number

20

Conclusion

• Motivations

– Traditional FPGA accelerator is only for specific workloads

– Diverse workloads are common for data center, cloud and autonomous driving

• Key features of XPU

– The XPU provides software programmable by instruction set based

architecture and guarantees the high efficiency by custom logic.

• Status

– Demonstrated in autonomous car and cloud applications

– Proven that it can support diverse workloads without degrading efficiency

21

