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Deploying Billions of 

Sensors Require

▪ Low cost

▪ Small size

▪ Robust operation in unfriendly environments

▪ Standardized hardware and easy software development

▪ ARM processors with standard wireless

▪ NO BATTERIES….
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Issues with 

Batteries
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Limited temperature range

Limited capacity

Hazardous Waste / Disposal



Power Available from 

Energy Harvesting

▪ EH can supply 1uW to 100uW 
indoors (exclude PV outdoors)

▪ EH can support sensor fusion 
computations

▪ Storage from super-caps or 
rechargeable batteries for 
wireless connections
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“Race to Idle” Paradigm

• Minimize energy use by 
running fast and 
switching to idle
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“Race to Idle” Wastes Energy

• Microcontrollers increasing frequency to reduce active time

Higher frequency limits supply voltage scaling
Higher frequency imposes limits on supply ripple/noise
Higher frequency requires quality clocks (PLL)

Increase in wasted power 
during turn-on/off times

Buck capacitor charge Average
Current

Timer uncertainty for 
wakeup
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“Always-on” Paradigm

1%
26 MHz

Power = 0.01 * 4410 + 2.4 = 46.5 uW

0.3V
260 kHz

Power (uW) = 8 uW

6x better without even accounting for wasted power !

ADuCM4050
(Cortex M4)

EtaCore M3
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Software – “Race to Idle”

• Familiarize yourself with processor energy modes and transition times
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Software – “Race to Idle”

• Familiarize yourself with different clocks

• Organize code to minimize wakeups
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Software – “Always on”

• Power constrained : Determine available power and 
set voltage

OR
• Performance constrained : Determine MIPS needed 

and set voltage 
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Challenges in Deep Subthreshold Operation

• Model quality

• Large delay variation 
over PVT

• Lognormal delay 
distribution – timing 
closure tools ?

• 3x mismatch between 
adjacent gates
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DIAL Architecture

• Circuit operates from 0.25 – 1.2V continuously with no resets required
E
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Design Methodology

1. Sync to Async low voltage 
conversion

2. Delay insensitive cell library 
development

3. Optimization for PPA

4. Async DFT Scan Insertion at 
operational voltage

5. Sync to Async Formal 
Verification
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DIAL™ Methodology
Any Foundry

1

5
4

2
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All aspects of the design flow are addressed and automated



Foundry Library

▪ We’ve done 180nm, 130nm, 90nm 
and 55nm

▪ Deep sub-threshold operation

▪ 5X MIPS/Watts of any competing 
processor

▪ Used this logic to develop low power 
SoC

▪ Allows processor operation down to 
0.25V

▪ Robust across and temperature 
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Static Noise Margin: Butterfly Plot of TH22 / NOR2

VDD=1.0V VDD=0.5V

VDD=0.3V VDD=0.25V
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Over 5% NM

Design for Low-Voltage Operation over Corners



Silicon Measurements of Test 

Circuits and Cell Library

▪ Transistor chains and gates for 
standard cell characterization – in 
progress

▪ Example of TSMC90LP

▪ 32 bit counter test chip shows good 
match between measurements and 
simulations 

‒ 25 kHz / 50 nW

▪ Today we also have a fully functional 
fully self timed Cortex M3 SOC in DIAL 
technology.
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Build Into a Holistic Low 

Power Platform

▪ Low-voltage, delay insensitive logic
‒ 1 patent granted, 15 pending

▪ Digital circuits
‒ Coolflux DSP

‒ Real Time Clocks

‒ AES

▪ Asynchronous SAR ADC

▪ High efficiency power management

▪ Unique interfaces to SRAM, UART…
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“Eta Compute can safely claim without 

contradiction that they have developed the 

world’s lowest power microcontroller IP”
Bernard Murphy: SemiWiki, ex-CTO Atrenta
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Benefits of an Always 

On Processor

▪ Fast interrupt response
▪ Regular monitoring of sensor to alter node behavior

‒ Optimize transducer energy conversion (MPPT)
‒ Schedule RF during high source energy periods

▪ Vary performance depending on load (“paddle-
shift”)

‒ Sensor data collection / processing at low frequency
‒ RF transmission at high frequency

▪ “Pay as you go” on energy
‒ Turn on oscillator only when communicating
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TEST 

CHIP

Regulators

- 3.3V USB

- 2.5V I/O

- 1.2V DIG

- 0.25 DIAL

USB Connection

- 5V

- UART/com: 

- Front Panel

- SWD/openocd

10 PIN

Coresight
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Silicon Measurements of 

ARM Cortex®-M3 based SoC

▪ TSMC90LP M3 Operation at 5 uW

▪ Optimizations yielded 30% reduction- more coming

▪ Standard Eclipse, Keil and Linux debug and development

▪ Runs >200 kHz directly off solar cell with fluorescent lighting

▪ Working on 55LP ARM Cortex-M3
‒ Further power reductions 

‒ DSP, ADC, PMIC, RTC
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Etacore EH - Performance

Gen 1 – 90LP

Gen 2 – 55LP
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EH- enhanced DI
Gen 2 in design now



Minimal Power Variation across Temperature

• Constant current- PMIC varies voltage for temp & process compensation
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Robust to Power Supply Variation

0.9V

Coremark
Comparison
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Sensor Fusion 

Applications

▪ Sensor hub processing using M4 
instruction set

‒ A possible next step on our roadmap.

‒ Optimized design flow with EtaCore
DSP is estimated to reduce power by 
over 2x compared to these numbers

‒ Estimated instruction count from 
Freescale app note

▪ Advantage grows exponentially with 
lower fusion rate 

‒ eg. Bluetooth Beacon
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State Time (us) Current (mA) Comments

1 Pre-processing 1160 3.26 Radio setup

2 Radio Prep 101 4.3 Radio on / Transition to RX

3 TX 280 6.1 0 dBm, Channel 37, 20 bytes

4 TX to RX Transition 112 4.66 Tx to Rx transition

5 RX 184 6.47 Receive Time 

6 RX to TX Transition 370 3.43 Rx to Tx transition

7 TX 280 6.1 0 dBm, Channel 37, 20 bytes

8 TX to RX Transition 112 4.66 Tx to Rx transition

9 RX 184 6.47 Receive Time 

10 RX to TX Transition 370 3.43 Rx to Tx transition

11 TX 280 6.1 0 dBm, Channel 37, Aruba - 20 bytes

12 TX to RX Transition 112 4.66 Tx to Rx transition

13 RX 184 6.47 Receive Time 

14 Post Processing 685 2.45 Process received packets and go to sleep

Total On Time 4.414 msec

 Transmit dutycycle 0.5 sec



Energy Harvested Edge Node
Based on our fully self timed Cortex M3.
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Demonstration



Summary

▪ Unique digital technology that enables always-on 
sensor nodes 

▪ Enable more processor MIPS at much lower power 
consumption

▪ Longer battery life, small size sensor nodes

▪ We deliver SoC, turnkey sensor boards
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Where can this technology go, all the way 

to neuromorphic machine learning at the 

edge with unsupervised learning



David C. Baker, Ph.D.
dave@etacompute.com

cell: 512-585-5927

THANK YOU!


