
• SoC are multi-core heterogeneous computing platforms 
– No good tools for programming them efficiently (debugging, 

instrumentation) exist 

– writing parallel programs the old way (by using pthreads) does 

not scale 

– Programming for these platforms is hard and prohibits efficient 

use of all available compute resources 

• Support many-cores and heterogeneous configurations 
for applications 
– We propose to adopt TaskSuperscalar (TSs) programming models 

• OmpSs, OpenMP 4.0, StarPU … 

– Break down large programs into a connected mesh of small 

tasks; running on heterogeneous group of processors, use 

dataflow dependencies for synchronization (instead of barriers) 

– Out-of-order execution of tasks depends on inter-task 

dependencies 

Heterogeneous Compute Platform Architecture Performance (run on Xilinx Zynq platform) 
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Task Parallel Programming Model + Hardware Acceleration = Performance Advantage 

serial execution (1 core) 

MTSP  = UNICAMP runtime (with HWS) 

IOMP  = Intel OpenMP runtime 

Both benchmarks use 2 cores 

Gain = equivalent of 1 CPU core 

Tioga Task-Graph-Accelerator 

Kastors Benchmark (Jacobi & Sparse-LU) 
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Synthetic “Toy” Benchmarks 

toy1 toy2 toy3 toy4 toy5 toy6 toy7 toy8 toy9 toy10 toy11 toy12 toy13 toy14 

MTSP     IOMP   

Jacobi 
Sparse-LU 

#pragma task input(a) output(b) 
void fun1(float *a, float *b); 
 
#pragma task input(a) output(b) 
void fun2(float *a, float *b); 
 
 
for (int i=1, j=1;  i<N;  i++)  { 
 
       fun1(&v[i-1],  &v[i]); 
 
       for (int k=0;  k<i;  k++,  j++)  { 
              
             fun2(&v[i],   &u[j]); 
       } 
 
       fun3( 3 * i ); 
} 

fun1 and fun2 are Kernel 
Functions. 

Parameter semantics are 
informed:  

IN, OUT or INOUT 

Will create a new Task! 

Will create a new Task! 

Will NOT create a new Task! 

• Running small tasks  
– Run-time system introduces a fixed, non-negligible overhead for 

task creation, task submission, task issue and dependence 

management 

– HW support, acceleration, for critical functions, for example task 

scheduling and dependence resolution 

– Manage helper tasks (preload data for accelerators) 

 
 

• Task definition, creation and submission 
– Sequential code with pragmas to convey additional information 

to construct the data-flow-graph 

– Record dataflow dependencies as tasks are submitted 

 

 

Kastors Benchmark (https://gforge.inria.fr/projects/kastors/) 
• The KASTORS benchmarks suite was designed to evaluate OpenMP 4.0 

task dependencies 
• Modified state-of-the-art OpenMP 3.0 benchmarks and data-flow 

parallel linear algebra kernels to make use of tasks with dependencies 
• KASTORS can also be used to evaluate performance of OpenMP 

implementations of task dependencies compared to global taskwait-
based approaches 

Toy Benchmarks 
• Synthetic with different number and type of dataflow dependencies 

2 cores = CA9 @660 MHz; Tioga @50 MHz  

Memory 
Subsystem 

Important: Coherent memory access minimizes communication 
overhead between CPU cores and TGA 
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• Task Graph Accelerator key parameters 
o Estimated die area:  < 0.1 mm2 (TSMC 16FF) 

o Clock speed:  > 800 MHz 

o Capacity: 

 512 active tasks 

 4096 graph edges (data flow dependencies) on up to 512 

variables 

o Design has been implemented and demonstrated on a 

ZEDBOARD/ZYBO (XILINX Zynq) platform 
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Application Level 

Compiler Support 

o GCC = GNU compiler 

o CLANG = LLVM compiler 
o CLANG+ = LLVM  

compiler with OmpSs 
support added 

TSs Runtime 
o Nanos = BSC runtime 
o MTSP = UNICAMP runtime 

HW Runtime Accelerator 

SoC Compute Platform 

DiscoPop 
o Automatically parallelize 
o Identify CU tasks 

(computational Units)  
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