
• SoC are multi-core heterogeneous computing platforms
– No good tools for programming them efficiently (debugging,

instrumentation) exist

– writing parallel programs the old way (by using pthreads) does

not scale

– Programming for these platforms is hard and prohibits efficient

use of all available compute resources

• Support many-cores and heterogeneous configurations
for applications
– We propose to adopt TaskSuperscalar (TSs) programming models

• OmpSs, OpenMP 4.0, StarPU …

– Break down large programs into a connected mesh of small

tasks; running on heterogeneous group of processors, use

dataflow dependencies for synchronization (instead of barriers)

– Out-of-order execution of tasks depends on inter-task

dependencies

Heterogeneous Compute Platform Architecture Performance (run on Xilinx Zynq platform)

Literature
[1] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task Superscalar: Using
processors as functional units. In Hot Topics in Parallelism (HOTPAR), 2010.

[2] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task
Superscalar: An Out-of-Order task pipeline. In Intl. Symposium on Microarchitecture (MICRO)

[3] T. Dallou, B. Juurlink, FPGA-based prototype of Nexus++ task manager, in: 6th Workshop on
Many-Task Computing on Clouds, Grids, and Supercomputers (MTAGS13), 2013.

[4] F. Yazdanpanah, D. Jiménez-González, C. Álvarez-Martínez, Y. Etsion, R.M. Badia, Analysis of the
task superscalar architecture hardware design, in: ICCS’13, 2013

[5] Fahimeh Yazdanpanah; Hardware Design of Task Superscalar Architecture, PhD Thesis, Universitat
Politecnica de Catalunya, 2014

[6] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta. Hierarchical task-based programming with
StarSs. J. High Performance Computing Application, 23(3). 27

[7] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas. OmpSs: A
proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters, 2011

Tamer Dallou1, Divino Cesar Soares Lucas2, Guido Araujo2, Lucas Morais2, Eduardo Ferreira Barbosa2, Michael Frank3, Richard Bagley3, Raj Sayana3

1 LG Electronics Technology Center Europe, 2University of Campinas, Brazil (Unicamp), 3LG Electronics Mobile Research, San Jose Lab

Task Parallel Programming Model + Hardware Acceleration = Performance Advantage

serial execution (1 core)

MTSP = UNICAMP runtime (with HWS)

IOMP = Intel OpenMP runtime

Both benchmarks use 2 cores

Gain = equivalent of 1 CPU core

Tioga Task-Graph-Accelerator

Kastors Benchmark (Jacobi & Sparse-LU)

Sp
ee

d
u

p
 r

el
a

ti
ve

 t
o

 s
er

ia
l

2.0

1.5

0.5

1.0

0

Sp
ee

d
u

p

0.0

1.0

2.0

3.0

4.0

5.0

6.0
Speedup to Serial Speedup to IOMP

Synthetic “Toy” Benchmarks

toy1 toy2 toy3 toy4 toy5 toy6 toy7 toy8 toy9 toy10 toy11 toy12 toy13 toy14

MTSP IOMP

Jacobi
Sparse-LU

#pragma task input(a) output(b)
void fun1(float *a, float *b);

#pragma task input(a) output(b)
void fun2(float *a, float *b);

for (int i=1, j=1; i<N; i++) {

 fun1(&v[i-1], &v[i]);

 for (int k=0; k<i; k++, j++) {

 fun2(&v[i], &u[j]);
 }

 fun3(3 * i);
}

fun1 and fun2 are Kernel
Functions.

Parameter semantics are
informed:

IN, OUT or INOUT

Will create a new Task!

Will create a new Task!

Will NOT create a new Task!

• Running small tasks
– Run-time system introduces a fixed, non-negligible overhead for

task creation, task submission, task issue and dependence

management

– HW support, acceleration, for critical functions, for example task

scheduling and dependence resolution

– Manage helper tasks (preload data for accelerators)

• Task definition, creation and submission
– Sequential code with pragmas to convey additional information

to construct the data-flow-graph

– Record dataflow dependencies as tasks are submitted

Kastors Benchmark (https://gforge.inria.fr/projects/kastors/)
• The KASTORS benchmarks suite was designed to evaluate OpenMP 4.0

task dependencies
• Modified state-of-the-art OpenMP 3.0 benchmarks and data-flow

parallel linear algebra kernels to make use of tasks with dependencies
• KASTORS can also be used to evaluate performance of OpenMP

implementations of task dependencies compared to global taskwait-
based approaches

Toy Benchmarks
• Synthetic with different number and type of dataflow dependencies

2 cores = CA9 @660 MHz; Tioga @50 MHz

Memory
Subsystem

Important: Coherent memory access minimizes communication
overhead between CPU cores and TGA

Register
Space

Submission
queue

Retirement
queue

Frontend
Parser

Free list
(512)

Dependence
Manager

Task Pool
manager

Retirement
Manager

memory
(for each process)

Control
Registers

Doorbell

Circular buffer in
memory

find/allocate entries
rename address

Kick off
overflow

Kick off
Free list (512)

Ready to run
queue(s)

Ready to run
queue(s)

Ready to run
queue(s)

Ready to
run

queue(s)

Dependence
Count

Rename
Engine

Circular buffers
in memory

memory
(for each process)

Task
Pool

Name TagsName
Tags

8-ways

Bus
Master

IF

ACE
Lite

Register
Block

• Task Graph Accelerator key parameters
o Estimated die area: < 0.1 mm2 (TSMC 16FF)

o Clock speed: > 800 MHz

o Capacity:

 512 active tasks

 4096 graph edges (data flow dependencies) on up to 512

variables

o Design has been implemented and demonstrated on a

ZEDBOARD/ZYBO (XILINX Zynq) platform

GPU

Coherent Interconnect

Bus-I/F

Doorbell
Interface

Task
Pool

Queue
Manager

L2$

Core
1

L1$

Core
0

L1$

Core
2

L1$

Core
3

L1$

L2$

Big core
1

L1$

Big core
0

L1$

big LITTLE
TGA
(Task Management)

Application Level

Compiler Support

o GCC = GNU compiler

o CLANG = LLVM compiler
o CLANG+ = LLVM

compiler with OmpSs
support added

TSs Runtime
o Nanos = BSC runtime
o MTSP = UNICAMP runtime

HW Runtime Accelerator

SoC Compute Platform

DiscoPop
o Automatically parallelize
o Identify CU tasks

(computational Units)

DiscoPoP
Mercurium

MTSP Nanos

Task Graph Accelerator

OmpSs OpenMP C/C++
Sequential Code

GCC CLANG CLANG+

Iterative refinement

SMP GPU ACC

Instrumentation

Software Architecture

