Task Parallel Programming Model + Hardware Acceleration = Performance Advantage

Tamer Dalloul, Divino Cesar Soares Lucas?, Guido Araujo?, Lucas Morais?, Eduardo Ferreira Barbosa?, Michael Frank3, Richard Bagley?, Raj Sayana3

1 LG Electronics Technology Center Europe, ?University of Campinas, Brazil (Unicamp), 3LG Electronics Mobile Research, San Jose Lab

* SoC are multi-core heterogeneous computing platforms
— No good tools for programming them efficiently (debugging,
instrumentation) exist
— writing parallel programs the old way (by using pthreads) does
not scale
— Programming for these platforms is hard and prohibits efficient
use of all available compute resources

e Support many-cores and heterogeneous configurations
for applications

— We propose to adopt TaskSuperscalar (TSs) programming models

* OmpSs, OpenMP 4.0, StarPU ...

— Break down large programs into a connected mesh of small
tasks; running on heterogeneous group of processors, use
dataflow dependencies for synchronization (instead of barriers)

— OQOut-of-order execution of tasks depends on inter-task
dependencies

e Task definition, creation and submission
— Sequential code with pragmas to convey additional information
to construct the data-flow-graph
— Record dataflow dependencies as tasks are submitted

.....

.

O
.

: funl and fun2 are Kernel
i Functions.

#pragma task input(a) output(b)
void funi(float *a, float *b);

Parameter semantics are
informed:
IN, OUT or INOUT

#pragma task input(a) output(b)
void fun2(float *a, float *b);

o'

for (inti=1, j=1; i<N; i++) {

fun1(&v[i-1], &v[i]); Will create a new Task!

v

for (int k=0; k<i; k++, j++) {

Will create a new Task!

v

fun2(&vli], &ulj]);
}

fun3(3 *i);
} /4

* Running small tasks

— Run-time system introduces a fixed, non-negligible overhead for

v

Will NOT create a new Task!

task creation, task submission, task issue and dependence
management

— HW support, acceleration, for critical functions, for example task
scheduling and dependence resolution

— Manage helper tasks (preload data for accelerators)

Heterogeneous Compute Platform Architecture

: TGA
blg LITTLE (Task Management)
Big core Big core C%re Ccire Task Queue
0 1
s 18 Pool Manager
L1$ L1$
C C
Zre :re Doorbell
115 1S Interface
L2S L2S Bus-I/F

|

|

|

Coherent Interconnect

I

Memory
Subsystem

GPU

Important: Coherent memory access minimizes communication
overhead between CPU cores and TGA

Software Architecture

Application Level

Compiler Support

o GCC = GNU compiler

o CLANG = LLVM compiler

o CLANG+ = LLVM
compiler with OmpSs
support added

TSs Runtime
o Nanos = BSC runtime
o MTSP = UNICAMP runtime

HW Runtime Accelerator

SoC Compute Platform

P e e e e i T TR

P e e e e R T I R SR P

Tioga Task-Graph-Accelerator

4 memory N\

(foreach process) i_.
- _i | Kick off Kick off :
i o L I_ | IR i = Free list (512) overflow i
| 5”2:’:;'"“ L "1 Rename| name Dependence |
i i Frontend | Engine | ¥ Manager |
I Circular buffi | i - — :
L . Parser @ Perener || |
I [[I
| | Free “St __ S
: : Ace (512
i memory | Mite Bus
i (for each process) (——\ Master
! i IF
I I
! !
| Circular buffers |
: e i TaSk POOl Task
i Readyto |- —f—|——— manager | Poo
[run | —[p——

I queue(s) I

I I

i |

L [

Retirement | %:m] Retirement
queue ST

3 Manager
T

| Doorbell ——F]-1-——

| Poome Q_ Control

Register | Registers Register
Space [T Block
_ J

* Task Graph Accelerator key parameters
o Estimated die area: < 0.1 mm? (TSMC 16FF)
o Clock speed: >800 MHz
o Capacity:
= 512 active tasks
= 4096 graph edges (data flow dependencies) on up to 512

variables
o Design has been implemented and demonstrated on a
ZEDBOARD/ZYBO (XILINX Zynq) platform

OmpSs . OpenMP ! C/C++
= § Sequential Code |
3 ~ Iterative refinement
Mercurium || ! S i
¥ L X DiscoPoP ;
GCC || CLANG+ || CLANG
- : | Instrumentation :
Nanos B MTSP
... " DiscoPop
Task Graph Accelerator : o Automatically parallelize
___ = o Identify CU tasks
SMP GPU ACC | (computational Units)

= e = s mm s mm s mm s mm s s Em s mm s s mm s mm s s Em f mm 4 mm s mm s mm s Em s M= & mm s mm s M= s s Em f M= & e s mm s M s mm s mm s M= s mm s = § s Em s M= s s Em s mm s s mm s mm s mm t o= om s

4 N

Performance (run on Xilinx Zynq platform)
2 cores = CA9 @660 MHz; Tioga @50 MHz

Kastors Benchmark (Jacobi & Sparse-LU)

2.0 B Jacobi
I Sparse-LU
1.5 Gain = equivalent of 1 CPU core

1.0

serial execution (1 core)

0.5

Speedup relative to serial

MTSP

IOMP

MTSP = UNICAMP runtime (with HWS)
IOMP = Intel OpenMP runtime
Both benchmarks use 2 cores

Synthetic “Toy” Benchmarks

6.0
B speedup to Serial W Speedup to IOMP

5.0

4.0

3.0

2.0

1.0 I I I
0.0 1

toyl itoy2 toy3 toy4 toy5 toy6 toy7 toy8 toy9 toyl0 toyll toyl2 toyl3 toyl4

Speedup

Kastors Benchmark (https://gforge.inria.fr/projects/kastors/)

* The KASTORS benchmarks suite was designed to evaluate OpenMP 4.0
task dependencies

* Modified state-of-the-art OpenMP 3.0 benchmarks and data-flow
parallel linear algebra kernels to make use of tasks with dependencies

* KASTORS can also be used to evaluate performance of OpenMP
implementations of task dependencies compared to global taskwait-
based approaches

Toy Benchmarks
* Synthetic with different number and type of dataflow dependencies

Literature
[1] V. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task Superscalar: Using
processors as functional units. In Hot Topics in Parallelism (HOTPAR), 2010.

[2] V. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, and M. Valero. Task
Superscalar: An Out-of-Order task pipeline. In Intl. Symposium on Microarchitecture (MICRO)

[3] T. Dallou, B. Juurlink, FPGA-based prototype of Nexus++ task manager, in: 6th Workshop on
Many-Task Computing on Clouds, Grids, and Supercomputers (MTAGS13), 2013.

[4] F. Yazdanpanah, D. Jiménez-Gonzalez, C. Alvarez-Martinez, Y. Etsion, R.M. Badia, Analysis of the
task superscalar architecture hardware design, in: ICCS’13, 2013

[5] Fahimeh Yazdanpanah; Hardware Design of Task Superscalar Architecture, PhD Thesis, Universitat
Politecnica de Catalunya, 2014

[6] J. Planas, R. M. Badia, E. Ayguade, and J. Labarta. Hierarchical task-based programming with
StarSs. J. High Performance Computing Application, 23(3). 27

[7] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and J. Planas. OmpSs: A
proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters, 2011

