Task Parallel Programming Model + Hardware Acceleration = Performance Advantage
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* SoC are multi-core heterogeneous computing platforms
— No good tools for programming them efficiently (debugging,
instrumentation) exist
— writing parallel programs the old way (by using pthreads) does
not scale
— Programming for these platforms is hard and prohibits efficient
use of all available compute resources

e Support many-cores and heterogeneous configurations
for applications

— We propose to adopt TaskSuperscalar (TSs) programming models

* OmpSs, OpenMP 4.0, StarPU ...

— Break down large programs into a connected mesh of small
tasks; running on heterogeneous group of processors, use
dataflow dependencies for synchronization (instead of barriers)

— OQOut-of-order execution of tasks depends on inter-task
dependencies

e Task definition, creation and submission
— Sequential code with pragmas to convey additional information
to construct the data-flow-graph
— Record dataflow dependencies as tasks are submitted
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: funl and fun2 are Kernel
i Functions.

#pragma task input(a) output(b)
void funi(float *a, float *b);

Parameter semantics are
informed:
IN, OUT or INOUT

#pragma task input(a) output(b)
void fun2(float *a, float *b);

o'
-----

for (inti=1, j=1; i<N; i++) {

fun1(&v[i-1], &v[i]); Will create a new Task!

v

for (int k=0; k<i; k++, j++) {

Will create a new Task!

v

fun2(&vli], &ulj]);
}

fun3(3 *i);
} /4

* Running small tasks

— Run-time system introduces a fixed, non-negligible overhead for

v

Will NOT create a new Task!

task creation, task submission, task issue and dependence
management

— HW support, acceleration, for critical functions, for example task
scheduling and dependence resolution

— Manage helper tasks (preload data for accelerators)
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Important: Coherent memory access minimizes communication
overhead between CPU cores and TGA

Software Architecture

Application Level

Compiler Support

o GCC = GNU compiler

o CLANG = LLVM compiler

o CLANG+ = LLVM
compiler with OmpSs
support added

TSs Runtime
o Nanos = BSC runtime
o MTSP = UNICAMP runtime

HW Runtime Accelerator

SoC Compute Platform
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* Task Graph Accelerator key parameters
o Estimated die area: < 0.1 mm? (TSMC 16FF)
o Clock speed: >800 MHz
o Capacity:
= 512 active tasks
= 4096 graph edges (data flow dependencies) on up to 512

variables
o Design has been implemented and demonstrated on a
ZEDBOARD/ZYBO (XILINX Zynq) platform
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Performance (run on Xilinx Zynq platform)
2 cores = CA9 @660 MHz; Tioga @50 MHz

Kastors Benchmark (Jacobi & Sparse-LU)
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MTSP = UNICAMP runtime (with HWS)
IOMP = Intel OpenMP runtime
Both benchmarks use 2 cores

Synthetic “Toy” Benchmarks
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Kastors Benchmark (https://gforge.inria.fr/projects/kastors/)

* The KASTORS benchmarks suite was designed to evaluate OpenMP 4.0
task dependencies

* Modified state-of-the-art OpenMP 3.0 benchmarks and data-flow
parallel linear algebra kernels to make use of tasks with dependencies

* KASTORS can also be used to evaluate performance of OpenMP
implementations of task dependencies compared to global taskwait-
based approaches

Toy Benchmarks
* Synthetic with different number and type of dataflow dependencies
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