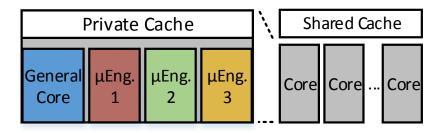
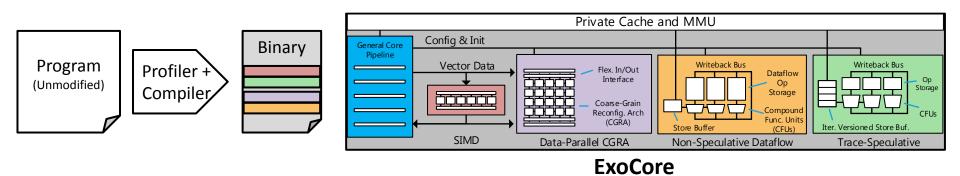

Modularizing the Microprocessor Core to Outperform Traditional Out-of-Order

Tony Nowatzki Karthikeyan Sankaralingam


Paper Link: Analyzing Behavior Specialized Acceleration. ASPLOS 2016

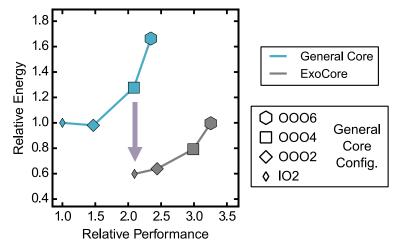
Observation: Programs Execute in Phases

- Programs phases have distinct properties (degree of memory regularity, control criticality, data parallelism etc.)
- These properties can be exploited by highly-tailored non-general purpose architectures

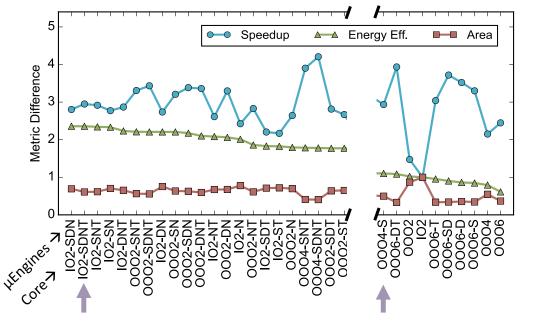

ExoCore: Modular, Heterogeneous Core

- ExoCore integrates a general purpose core with programmable µEngines, behind a single cache system
- It dynamically switches between µEngines to match the properties of the current program phase, improving performance and energy-efficiency

2-wide ExoCore provides 60% speedup over 2-wide OOO 2-wide ExoCore is 2x lower power than 6-wide OOO with same performance


ExoCore Approach Overview

- ExoCore Compilation
 - Targets unmodified programs and uses profile information to assign each region to a $\mu\textsc{Engine}$
 - μEngine configurations and decisions stored in "fat binary"
- Execution Model
 - General core hands-off execution to μEngines on region entry (loops/funcs)
 - μEngines (and general core) go into low-power state when not-in use
- Example µEngines
 - Data parallel CGRA: targets vectorizable regions with high degree of computation
 - Non Speculative Dataflow: targets non-data parallel codes with noncritical control flow
 - Trace-Processor: non-data parallel loops with highly biased branches


Results Summary

Performance/Energy Tradeoffs

Core Type	ExoCore Speedup	ExoCore Energy Reduction
Small (in-order)	2x	1.7x
Med. (2-Wide 000)	1.6x	1.5x
Large (6-Wide OOO)	1.4x	1.7x

Design Space (4 Cores × 16 Accel. Combos)

- Modular design enables simple trade-off of performance, area, energy, and design complexity.
- In-order core with four µEngines matches the perf. of a 4-wide OOO core, with 15% less area and 2× energy efficiency.

Implications and Ongoing Work

- Implications
 - Modularity simplifies general purpose core design µEngines can be designed and integrated without disruptive change to the core.
 - Promising approach for exceeding the performance/energy frontier of conventional Out-of-Order processors, and for continual improvements.
- Ongoing Work RISCV-based Prototype
 NSCV-based Prototype
 - Goal 1: Fully open-source configurable ExoCore prototype in Chisel, integrated with Berkley Rocket Core, with working compiler.
 - Goal 2: Complete FPGA prototype in 6-months
 - Goal 3: Tape-out at 28nm in 1-year