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Modularizing the Microprocessor Core  
to Outperform Traditional Out-of-Order 

Observation: Programs Execute in Phases 
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2-wide ExoCore provides 60% speedup over 2-wide OOO 
2-wide ExoCore is 2x lower power than 6-wide OOO with same performance 

• Programs phases have distinct 
properties (degree of memory 
regularity, control criticality, data 
parallelism etc.) 

• These properties can be exploited 
by highly-tailored non-general 
purpose architectures 

Tony Nowatzki     Karthikeyan Sankaralingam 

ExoCore: Modular, Heterogeneous Core 

• ExoCore integrates a general purpose 
core with programmable µEngines, 
behind a single cache system 

• It dynamically switches between 
µEngines to match the properties of 
the current program phase, improving 
performance and energy-efficiency 

Paper Link: Analyzing Behavior Specialized Acceleration. ASPLOS 2016 

http://research.cs.wisc.edu/vertical/papers/2016/asplos16-exocore.pdf


ExoCore Approach Overview 
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• ExoCore Compilation 
– Targets unmodified programs and uses profile information to assign each 

region to a µEngine 
– µEngine configurations and decisions stored in “fat binary” 

• Execution Model 
– General core hands-off execution to µEngines on region entry (loops/funcs) 
– µEngines (and general core) go into low-power state when not-in use 

• Example µEngines 
– Data parallel CGRA: targets vectorizable regions with high degree of 

computation 
– Non Speculative Dataflow:  targets non-data parallel codes with non-

critical control flow 
– Trace-Processor: non-data parallel loops with highly biased branches 
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Results Summary 
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• Modular design enables 
simple trade-off of 
performance, area, energy, 
and design complexity. 

• In-order core with four 
µEngines matches the perf. 
of a 4-wide OOO core, with 
15% less area and 2× energy 
efficiency. 

Performance/Energy Tradeoffs 

Design Space (4 Cores × 16 Accel. Combos)  

Core Type ExoCore 
Speedup 

ExoCore Energy 
Reduction 

Small (in-order) 2x  1.7x  

Med. (2-Wide OOO) 1.6x  1.5x 

Large (6-Wide OOO) 1.4x 1.7x 



Implications and Ongoing Work 

• Implications 
– Modularity simplifies general purpose core design –

µEngines can be designed and integrated without 
disruptive change to the core. 

– Promising approach for exceeding the 
performance/energy frontier of conventional Out-of-
Order processors, and for continual improvements. 

• Ongoing Work – RISCV-based Prototype 
– Goal 1: Fully open-source configurable ExoCore 

prototype in Chisel, integrated with Berkley Rocket 
Core, with working compiler. 

– Goal 2: Complete FPGA prototype in 6-months 

– Goal 3: Tape-out at 28nm in 1-year 
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