
1

Modularizing the Microprocessor Core
to Outperform Traditional Out-of-Order

Observation: Programs Execute in Phases

Core

Shared Cache

Core Core...General
Core

Private Cache

µEng.
1

µEng.
2

µEng.
3

Time
App. 5
App. 4
App. 3
App. 2
App. 1

2-wide ExoCore provides 60% speedup over 2-wide OOO
2-wide ExoCore is 2x lower power than 6-wide OOO with same performance

• Programs phases have distinct
properties (degree of memory
regularity, control criticality, data
parallelism etc.)

• These properties can be exploited
by highly-tailored non-general
purpose architectures

Tony Nowatzki Karthikeyan Sankaralingam

ExoCore: Modular, Heterogeneous Core

• ExoCore integrates a general purpose
core with programmable µEngines,
behind a single cache system

• It dynamically switches between
µEngines to match the properties of
the current program phase, improving
performance and energy-efficiency

Paper Link: Analyzing Behavior Specialized Acceleration. ASPLOS 2016

http://research.cs.wisc.edu/vertical/papers/2016/asplos16-exocore.pdf

ExoCore Approach Overview

2

Program
(Unmodified)

 Profiler +
 Compiler

Binary

• ExoCore Compilation
– Targets unmodified programs and uses profile information to assign each

region to a µEngine
– µEngine configurations and decisions stored in “fat binary”

• Execution Model
– General core hands-off execution to µEngines on region entry (loops/funcs)
– µEngines (and general core) go into low-power state when not-in use

• Example µEngines
– Data parallel CGRA: targets vectorizable regions with high degree of

computation
– Non Speculative Dataflow: targets non-data parallel codes with non-

critical control flow
– Trace-Processor: non-data parallel loops with highly biased branches

SIMD Data-Parallel CGRA Trace-SpeculativeNon-Speculative Dataflow

Config & Init

Vector Data

Coarse-Grain

Reconfig. Arch

(CGRA)

Flex. In/Out

Interface
Dataflow

Op

Storage

Compound

Func. Units

(CFUs)

Private Cache and MMU

Store Buffer

Writeback Bus

Op
Storage

CFUs

Iter. Versioned Store Buf.

Writeback Bus

General Core

Pipeline

ExoCore

Results Summary

3

• Modular design enables
simple trade-off of
performance, area, energy,
and design complexity.

• In-order core with four
µEngines matches the perf.
of a 4-wide OOO core, with
15% less area and 2× energy
efficiency.

Performance/Energy Tradeoffs

Design Space (4 Cores × 16 Accel. Combos)

Core Type ExoCore
Speedup

ExoCore Energy
Reduction

Small (in-order) 2x 1.7x

Med. (2-Wide OOO) 1.6x 1.5x

Large (6-Wide OOO) 1.4x 1.7x

Implications and Ongoing Work

• Implications
– Modularity simplifies general purpose core design –

µEngines can be designed and integrated without
disruptive change to the core.

– Promising approach for exceeding the
performance/energy frontier of conventional Out-of-
Order processors, and for continual improvements.

• Ongoing Work – RISCV-based Prototype
– Goal 1: Fully open-source configurable ExoCore

prototype in Chisel, integrated with Berkley Rocket
Core, with working compiler.

– Goal 2: Complete FPGA prototype in 6-months

– Goal 3: Tape-out at 28nm in 1-year

4

