
A Dynamically Scheduled
Architecture for the Synthesis

of Graph Methods
MARCO MINUTOLI*, VITO GIOVANNI CASTELLANA*, ANTONINO TUMEO*,
MARCO LATTUADA+, FABRIZIO FERRANDI+

August 9, 2016 1

*High Performance Computing, Pacific Northwest National Laboratory, 99352 Richland WA, USA

+DEIB, Politecnico di Milano, 20132 Milano, Italy

{marco.minutoli, vitoGiovanni.Castellana, antonino.tumeo}@pnnl.gov

{marco.lattuada, fabrizio.ferrandi}@polimi.it

Graph Methods and Data Analytics

  Emergence of new large-scale Data Analytics applications
  Example: graph databases

  These applications employ graph as a convenient way to store data, and require graph
methods to perform explorations (i.e., queries)

  They exhibit “irregular” behaviors:
  Large datasets, not easily partitionable in balanced ways
  Many fine-grained and unpredictable data accesses
  High Synchronization intensity
  Large amounts of fine-grained, dynamic parallelism (task based)

  Conventional general purpose processors or commodity accelerators (e.g., GPUs) are
not well suited for these workloads
  We can exploit custom accelerators on FPGAs
  Hand-designing accelerators on FPGA is hard and time-consuming
  High-Level Synthesis (HLS) enable generation of Register-Transfer Level code starting

from high level specifications (e.g., C)
  Conventional HLS has been rarely applied to graph problems

  We introduce a set of architectural templates to better support synthesis of graph
methods

August 9, 2016 2

First Architecture Template (Parallel
Controller + MIC)

August 9, 2016 3

  Conventional High Level Synthesis (targeted to Digital Signal Processing):
  Instruction Level Parallelism, uses the Finite State Machine with Datapath Model (FSMD) with

a centralized controller
  Simple memory abstraction (one port/one memory space), regular memory accesses

  Accelerating irregular applications (and RDF queries using graph methods)
  Support for task parallelism
  Advanced memory subsystem: support for large, multi-ported (parallel), shared memories, fine

grained accesses, and synchronization
  Solutions:

  Parallel distributed Controller (PC) – allows controlling an array of parallel accelerators (i.e.,
“hardware tasks”) with token passing mechanisms

  Memory Interface Controller (MIC) - allows supporting multi-ported shared memory with
dynamic address resolution and atomic memory operations

[V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo, M.
Lattuada, F. Ferrandi: High Level Synthesis of RDF
Queries for Graph Analytics. ICCAD 2015]

[M. Minutoli, V. G. Castellana, A. Tumeo: High-Level
Synthesis of SPARQL queries. SC15 poster]

Load Unbalancing in Queries

  Profiled the Lehigh University Benchmark (LUBM) with 5,309,056
triples (LUBM-40)

  Nested loops performing the search for the graph patterns of
Queries Q1-Q7

  Some iterations last order of magnitude more than others

August 9, 2016 4

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q1

 1

 10

 100

 0 10000 20000 30000 40000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q2

 1

 10

 100

 1000

 10000

 0 100000 200000 300000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q3

 1

 10

 100

 0 100 200 300 400 500 600 700N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q4

 1

 10

 100

 0 100 200 300 400 500 600 700N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q5

 1

 10

 100

 1000

 0 50 100 150 200N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q6

 1

 10

 100

 0 1000 2000 3000 4000 5000 6000N
o
r
m
a
l
i
z
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

Iteration

Q7

Dynamic Task Scheduler

August 9, 2016 5

  The Task Queue stores tasks ready for execution
  The Status Register keeps track of resource availability
  The Task Dispatcher issues the tasks
  The Termination Logic checks that all tasks have been used

[Marco	Minutoli,	Vito	Giovanni	
Castellana,	Antonino	Tumeo,	
Marco	La8uada,	Fabrizio	Ferrandi:	
Efficient	Synthesis	of	Graph	
Methods:	A	Dynamically	Scheduled	
Architecture.	ICCAD	2016]	

  The PC supports a block based fork-join parallel model
  Each group of task executing on the kernel pool must terminate before a new

one is launched
  The Dynamic Task scheduler launches a new task as soon as an

accelerator (kernel) is available

Experimental Evaluation

August 9, 2016 6

LUBM-1 (100k triples)

LUBM-40 (5M triples)

  Dynamic Scheduling always
provides higher performance

  In the majority of cases, speed
ups are over 3 (with 4
accelerators)

  The design is also more area
efficient: higher speed up than
area overhead (also w.r.t.
parallel controller)

Marco Lattuada, Fabrizio Ferrandi

DEIB – Politecnico di Milano
P.za Leonardo Da Vinci 32, 20132 Milano Italy
{marco.lattuada, fabrizio.ferrandi}@polimi.it

A Dynamically Scheduled Architecture
for the Synthesis of Graph Methods

Marco Minutoli, Vito Giovanni Castellana, Antonino Tumeo,
Marco Lattuada and Fabrizio Ferrandi

Introduction Query Execution Analysis

The Dynamic Task Scheduling Architecture

Experimental Evaluation

Dynamic Task Scheduler:
•  New tasks are inserted in the Task Queue
•  The Status Register keeps track of

resource availability
•  When there are available resources, the

Task Dispatcher pops a task from the
queue and start its execution

Kernels in the Pool:
•  are interfaced to the memory using a

Hierarchical Memory Controller Interface
supporting atomic memory operations.

•  notify the Status Register when they are
ready to accept another task.

The Resource Description Framework (RDF) is a standard data model that
represent data as triples (subject-predicate-object).	
	
RDF databases:
•  directly map to directed labeled graphs
•  can be queried using SPARQL	
	
SPARQL queries can be translated into Graph Pattern Matching methods that
are intrinsically irregular in their behavior
•  The execution is highly data-dependent
•  At the same time they are characterized by high level of data-parallelism	

Our Contributions: 	
•  We analyze the behavior of LUBM queries to understand how the load

unbalance between tasks affects the execution
•  We propose an architecture template to tolerate the unbalancing between

tasks that is suitable for adoption in High Level Synthesis Flows	

We consider 3 queries from LUBM (Q1-Q3):
•  Input graph: LUBM-40 (5,309,056 triples)

The execution time of each outer loop
iteration can vary of few order of magnitude.

Forking and joining tasks in groups can lead
to resource under utilization when the
workload between task is highly unbalanced
(e.g., the group needs to wait for the slowest
task: Q1 and Q3).

Termination Logic:
•  The Spawn Counter records the number of

spawned tasks (pushed into the queue)
•  The Complete Counter registers the

number of tasks consumed by the kernels
•  The Termination Checker monitors the

status of the Task Queue and the two
counters to verify the Termination Condition
and to assert the done signal accordingly

Termination Condition:
When the two counters are equal and the Task
Queue is empty all the Tasks that have entered
the queue have been consumed.

The architecture implementing the Dynamic Task Scheduling shows a
speed up over the Serial implementation between 2.75 and 3.76.

The area overhead is between 1.72-1.94 (LUTs) and 1.62-1.95 (Slices).

The memory profiling shows that with 8 kernels the architecture is able to
use 3 (out of 4) memory ports for the 80% of the computation time.

Increasing the number of kernels over 8 shows diminishing returns when
the number of memory channels is fixed to 4.

Serial Dynamic Scheduler
Area Overhead

SpeedUp
over Serial

LUTs Slices Latency (#) Max. Freq. LUTs Slices Latency (#) Max. Freq. LUTs Slices
Q1 5,600 1,802 1,082,526,974 130.34MHz 10,844 3,503 287,527,463 113.60MHz 1.94 1.94 3.76
Q2 2,690 824 7,359,732 143.66MHz 4,636 1,335 2,672,295 132.87MHz 1.72 1.62 2.75
Q3 5,525 1,775 308,586,247 121.27MHz 10,664 3,467 95,154,310 116.92MHz 1.93 1.95 3.24

Comparison between a Serial Architecture and one implementing Dynamic Scheduling (T=4)

T=6, CH=4 T=8, CH=4
LUTs Slices Latency Max. Freq LUTs Slices Latency Max. Freq

Q1 15,305 4,822 268,093,088 111.58MHz 20,286 6,469 268,491,462 104.08MHz
Q2 6,507 1,942 2,355,699 113.45MHz 8,429 2,381 2,268,763 112.47MHz
Q3 15,259 4,943 83,327,993 106.19MHz 20,078 6,486 79,649,000 102.67MHz

Architecture implementing Dynamic Scheduling with T=6 and T=8

Memory profiling of the architecture implementing the Dynamic Scheduling

SELECT ?x ?y
WHERE {
?y ub:subOrganizationOf
<http :// www.University0.edu > .

?y rdf:type ub:Department .
?x ub:worksFor ?y .
?x rdf:type ub:FullProfessor

}

?X

?Y

ub:FullProfessor

ub:Department

http://www.University0.edu

ub:worksFor

rdf:type

rdf:type

ub:subOrganizationOf

Marco Minutoli, Vito Giovanni Castellana,
Antonino Tumeo
Pacific Northwest National Laboratory
P.O. Box 999, MS-IN: J4-30, Richland, WA 99352 USA
{marco.minutoli, vitoGiovanni.Castellana,
antonino.tumeo}@pnnl.gov

