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Graph Methods and Data Analytics 

  Emergence of new large-scale Data Analytics applications 
  Example: graph databases 

  These applications employ graph as a convenient way to store data, and require graph 
methods to perform explorations (i.e., queries) 

  They exhibit “irregular” behaviors: 
  Large datasets, not easily partitionable in balanced ways 
  Many fine-grained and unpredictable data accesses 
  High Synchronization intensity 
  Large amounts of fine-grained, dynamic parallelism (task based) 

  Conventional general purpose processors or commodity accelerators  (e.g., GPUs) are 
not well suited for these workloads 
  We can exploit custom accelerators on FPGAs 
  Hand-designing accelerators on FPGA is hard and time-consuming 
  High-Level Synthesis (HLS) enable generation of Register-Transfer Level code starting 

from high level specifications (e.g., C) 
  Conventional HLS has been rarely applied to graph problems 

  We introduce a set of architectural templates to better support synthesis of graph 
methods 
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First Architecture Template (Parallel 
Controller + MIC) 
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  Conventional High Level Synthesis (targeted to Digital Signal Processing): 
  Instruction Level Parallelism, uses the Finite State Machine with Datapath Model (FSMD) with 

a centralized controller 
  Simple memory abstraction (one port/one memory space), regular memory accesses 

  Accelerating irregular applications (and RDF queries using graph methods) 
  Support for task parallelism 
  Advanced memory subsystem: support for large, multi-ported (parallel), shared memories, fine 

grained accesses, and synchronization 
   Solutions: 

  Parallel distributed Controller (PC) – allows controlling an array of parallel accelerators (i.e., 
“hardware tasks”) with token passing mechanisms 

  Memory Interface Controller (MIC) - allows supporting multi-ported shared memory with 
dynamic address resolution and atomic memory operations 

[V. G. Castellana, M. Minutoli, A. Morari, A. Tumeo, M. 
Lattuada, F. Ferrandi: High Level Synthesis of RDF 
Queries for Graph Analytics. ICCAD 2015] 
 
[M. Minutoli, V. G. Castellana, A. Tumeo: High-Level 
Synthesis of SPARQL queries. SC15 poster] 



Load Unbalancing in Queries 

  Profiled the Lehigh University Benchmark (LUBM) with 5,309,056 
triples (LUBM-40) 

  Nested loops performing the search for the graph patterns of 
Queries Q1-Q7 

  Some iterations last order of magnitude more than others 
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Dynamic Task Scheduler 
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  The Task Queue stores tasks ready for execution 
  The Status Register keeps track of resource availability 
  The Task Dispatcher issues the tasks 
  The Termination Logic checks that all tasks have been used 

[Marco	Minutoli,	Vito	Giovanni	
Castellana,	Antonino	Tumeo,	
Marco	La8uada,	Fabrizio	Ferrandi:	
Efficient	Synthesis	of	Graph	
Methods:	A	Dynamically	Scheduled	
Architecture.	ICCAD	2016]	

  The PC supports a block based fork-join parallel model 
  Each group of task executing on the kernel pool must terminate before a new 

one is launched 
  The Dynamic Task scheduler launches a new task as soon as an 

accelerator (kernel) is available 



Experimental Evaluation 
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LUBM-1 (100k triples) 

LUBM-40 (5M triples) 

  Dynamic Scheduling always 
provides higher performance 

  In the majority of cases, speed 
ups are over 3 (with 4 
accelerators) 

  The design is also more area 
efficient: higher speed up than 
area overhead (also w.r.t. 
parallel controller) 
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Introduction Query Execution Analysis 

The Dynamic Task Scheduling Architecture 

Experimental Evaluation 

Dynamic Task Scheduler: 
•  New tasks are inserted in the Task Queue 
•  The Status Register keeps track of 

resource availability 
•  When there are available resources, the 

Task Dispatcher pops a task from the 
queue and start its execution 

Kernels in the Pool: 
•  are interfaced to the memory using a 

Hierarchical Memory Controller Interface 
supporting atomic memory operations. 

•  notify the Status Register when they are 
ready to accept another task. 

 

The Resource Description Framework (RDF) is a standard data model that 
represent data as triples (subject-predicate-object).	
	
RDF databases: 
•  directly map to directed labeled graphs 
•  can be queried using SPARQL	
	
SPARQL queries can be translated into Graph Pattern Matching methods that 
are intrinsically irregular in their behavior 
•  The execution is highly data-dependent 
•  At the same time they are characterized by high level of data-parallelism	
 
Our Contributions: 	
•  We analyze the behavior of LUBM queries to understand how the load 

unbalance between tasks affects the execution 
•  We propose an architecture template to tolerate the unbalancing between 

tasks that is suitable for adoption in High Level Synthesis Flows	

We consider 3 queries from LUBM (Q1-Q3): 
•  Input graph: LUBM-40 (5,309,056 triples) 

The execution time of each outer loop 
iteration can vary of few order of magnitude. 
 
Forking and joining tasks in groups can lead 
to resource under utilization when the 
workload between task is highly unbalanced 
(e.g., the group needs to wait for the slowest 
task: Q1 and Q3). 

Termination Logic: 
•  The Spawn Counter records the number of 

spawned tasks (pushed into the queue) 
•  The Complete Counter registers the 

number of tasks consumed by the kernels 
•  The Termination Checker monitors the 

status of the Task Queue and the two 
counters to verify the Termination Condition 
and to assert the done signal accordingly 

 
Termination Condition: 
When the two counters are equal and the Task 
Queue is empty all the Tasks that have entered 
the queue have been consumed. 
 

The architecture implementing the Dynamic Task Scheduling shows a 
speed up over the Serial implementation between 2.75 and 3.76. 
 
The area overhead is between 1.72-1.94 (LUTs) and 1.62-1.95 (Slices). 
 
The memory profiling shows that with 8 kernels the architecture is able to 
use 3 (out of 4) memory ports for the 80% of the computation time. 
 
Increasing the number of kernels over 8 shows diminishing returns when 
the number of memory channels is fixed to 4. 

Serial Dynamic Scheduler
Area Overhead

SpeedUp
over Serial

LUTs Slices Latency (#) Max. Freq. LUTs Slices Latency (#) Max. Freq. LUTs Slices
Q1 5,600 1,802 1,082,526,974 130.34MHz 10,844 3,503 287,527,463 113.60MHz 1.94 1.94 3.76
Q2 2,690 824 7,359,732 143.66MHz 4,636 1,335 2,672,295 132.87MHz 1.72 1.62 2.75
Q3 5,525 1,775 308,586,247 121.27MHz 10,664 3,467 95,154,310 116.92MHz 1.93 1.95 3.24

Comparison between a Serial  Architecture and one implementing Dynamic Scheduling (T=4) 

T=6, CH=4 T=8, CH=4
LUTs Slices Latency Max. Freq LUTs Slices Latency Max. Freq

Q1 15,305 4,822 268,093,088 111.58MHz 20,286 6,469 268,491,462 104.08MHz
Q2 6,507 1,942 2,355,699 113.45MHz 8,429 2,381 2,268,763 112.47MHz
Q3 15,259 4,943 83,327,993 106.19MHz 20,078 6,486 79,649,000 102.67MHz

Architecture implementing Dynamic Scheduling with T=6 and T=8 

Memory profiling of the architecture implementing the Dynamic Scheduling 
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