An Intelligent ADAS Processor with Real-Time Semi-Global Matching and Intention Prediction for 720p Stereo Vision

Kyuho J. Lee, Kyeongryeol Bong, Changhyeon Kim, and Hoi-Jun Yoo, Korea Advanced Institute of Science and Technology (KAIST)

Motivation and Requirements of Intelligent ADAS¹)

< High-Performance ADAS Function >

- Several algorithms are executed simultaneously
- Must meet Real-time constraint (> 30fps)
- Global/Dense Stereo-vision is essential (SGM) is essentially required for high-accuracy depth map
- High resolution camera for high-accuracy detection (> 720p)
- Thermal-Design Power constraint due to absence of cooling fans (< 4W)

High-Performance & Energy-Efficient

1) ADAS: Advanced Driver Assistance System 2) ACC: Adaptive Cruise Control 3) AEB: Autonomous Emergency Braking 4) ICE: Intelligent Collision Evasion

- the driver
- Detected objects should be *intelligently selected* & *provided* to the driver
- For advanced functions such as ACC², AEB³, or ICE⁴⁾, *Behavior Analysis* is essential

Objects' Intention-Prediction

< Intention-Prediction for Selective Information >

Typical Road Scene

Numerous objects on the road, but providing excessive information to the driver disturbs driving Most objects are not risky, but only some are risky to

Intention Prediction Processor < **RNN-FIS** for Intention Prediction > <Object Detection Result> **Recurrent Output Memory** ∖ *z* = 6.7n Recurrent Recurrent *x* = 1.2m ↓ ∧ Feedback Input Fuzzy Rule Base Input $\mathbf{S}_{t} = \{\mathbf{x}_{t}, \, \mathbf{z}_{t}, \, \Delta \mathbf{x}_{t}, \, \Delta \mathbf{z}_{t}\}$ **Recurrent Neural Network (RNN) Fuzzy Inference System (FIS) Matrix Processing Unit Fuzzy Accelerator** RISC ^{I\$} Ctrlr. D\$ MF1 MF2 MF3 MF4 Clock Gating Ctrlr. Fuzzy Decoder System Bus Configuration memory & Shard DAC/ADC Bank

Hot Chips: A Symposium on High Performance Chips, August 21-23, 2016

E-mail: kyuho.jsn.lee@kaist.ac.kr

- Stereo Matching (SGM) for depth extraction
- Optical Flow for feature tracking
- *Region-of-Interest* generation to reduce computation
- 3D-world Mapping for ego-motion compensation & unit conversion
- Intention Prediction for behavior analysis
- Many SIMD/MIMD Core Architecture
- Different Parallelism
 - 1. High Pixel-Parallel Processing
 - 2. Moderate Pixel-/Task-Parallel Proc.
 - 3. Complex Task-Parallel Processing
- → DRMP for 3-domain DVFS control • ITS for workload-prediction & NoC BW Regulation
- *CAFeR* NoC^[1] for network congestion reduction

[1] K. Lee, ESSCIRC 2015, "Intelligent Task Scheduler with High Throughput NoC for Real-Time Mobile Object Recognition SoC"

< Chip Implementation and Spec. >

						Process	brocess 65nm 1P8M Logic CMOS	
	DRM	RGP	Intention			Chip Size	4.0mm x 4.0mm	
	ITS		Prediction				Nominal	1.2V
			Object Detection	Ego-motion	notion	Supply voltage	DVFS	0.65 - 1.2V
			Processor (ODP)	Compensation Processor (ECP)			Nominal	250MHz
H	Semi-Global		Optical Flow	Clock Frequency	DVFS	50 - 250MHz		
뭠			Global	(OFP)		Dewer	Average	330mW
		Matching				Power	Peak	582mW
	Processor (SGMP)					Peak Performance	502 GOPS 862 GOPS/W	
協						Power Efficiency		
					Area Efficiency	31.4 GOPS/mm ²		

< Performance Comparison >

	[2] ISSCC'12	[3] ISSCC'13	[4] 18800145	This Work		
			[4] 15500 15	Driving-mode	Parking-mode	
Function	Object Detection	Object Detection	Object Detection	Object Detection + Intention Prediction	Intention Prediction + Surveillance Record Trigger	
Process	40nm	130nm	40nm	65nm		
Area (mm²)	45	25	106	1	16	
ore Voltage (V)	1.1	1.2	1.1	1.2	0.8	
Operating equency (MHz)	266	200	266	250	20	
Power (mW)	749	260	3368	330	0.984	
Performance (GOPS)	464	271	1900	502	1.80	
ergy Efficiency (GOPS/W)	620	646	564	862	918	
area Efficiency (GOPS/mm ²)	10.3	10.8	17.9	31.4	0.1125	
tereo Matching	Local + Sparse	x	N/A	Global + Dense	Not Used	
Intelligence	x	X	X	0	0	

[2] Y. Tanabe, ISSCC 2012, "A 464GOPS 620GOPS/W heterogeneous multi-core SoC for image-recognition applications"

[4] J. Tanabe, ISSCC 2015, "A 1.9TOPS and 564GOPS/W heterogeneous multicore SoC with color-based object classification accelerator for image-recognition applications

