
SDA: Software-Defined Accelerator
for general-purpose big data analysis system

Jian Ouyang(ouyangjian@baidu.com),

Wei Qi, Yong Wang,

Yichen Tu, Jing Wang, Bowen Jia

Baidu is beyond a search engine

• Search

• O2O/autonomous car/cloud/finance…

1/22

Outline

• The overview of big data and its system

• Motivations and challenge of accelerating big data processing

• Our solution : SDA for big data

– Design goals

– Design and implementation

– Performance evaluation

• Conclusion

2/22

The overview of big data and its system

Data is big

~1PB/day

~100PB

~10Billion/day

~10Billion/day

~1000 Billion

~100PB/day

~1EBTotal data:

Processing data :

Total web pages:

Web pages updated:

Requests:

Total logs :

Logs updated:

3/22

The overview of big data and its system

Application
Knowledge

Graph
Multimedia NLP CTR Recommend

Data warehouse Machine learning Management

system

architecture

Software infrastructure

(Data center OS, Real time storage and

computation)

Basic facilities

(Data center, Network, Server)

• Applications

are diverse

• Systems are

complex

4/22

Motivation of accelerating big data processing

1

4

1

15

0

2

4

6

8

10

12

14

16

2009 2015

CPU capability scale of business

• Computing = data scale * algorithm complexity

• Trends
– Data scale increase rapidly

– Algorithm complexity increase rapidly

– Performance of CPU increase slowly

• Need to bridge the gap
5/22

• CPU typical configuration in data

center

• 2009, dual-core, ~3.0Ghz

• 2015, 8-core, ~2.0Ghz

• Scale of business (Baidu revenue)

• 2009, ~4.4B RMB

• 2015,~66B RMB

Challenges of accelerating general-purpose big data processing

• Difficult to abstract the computing kernels

– Diversities of big data applications

– Variable computing type

• Difficult to be integrated into distributed system

– Variable platforms and program models

• MR

• Spark

• Streaming

• User defined

– Variable data type and storage format

6/22

Our solution : SDA – Software-Defined Accelerator

• Our observations
– ~40% data analysis jobs written in SQL

– Most others of data analysis jobs can be rewritten in SQL

– Lots of popular SQL system

• HIVE

• Spark SQL

• Impala…

• our solution
– Software-Defined Accelerator for data analysis system

7/22

SDA – design goal

• Focus on general purpose data analysis system
– SQL accelerator

• Hiding the diversities of big data workloads

• Can be easily integrated into distributed system
– For example, Spark SQL

8/22

SDA design – abstraction of SQL kernels

• Operations abstraction
– Filter

– Sort

– Aggregate

– Join

– Group by

• Data type
– Char/uchar/short/ushort

– Int/uint/long/ulong

– Float/double(time)

– string

aggregate

sort

group by

join

filter

9/22

SDA design - system

sql analyzer

sql optimizer

sql plan

sql parser

software

hardware

sql query

sql transform layer

physical plan

SDA-API

SDA-DRIVER

join PE sort PE

sortjoinfilter
group

by
aggr

group PE aggr PE10filter PE

10/22

SDA design– data flow program model

• Data blocks resident in on-board DDR memory
– Column store

– Reduce communication overhead

• Copy block to host
– The operations which are not supported by SDA

– Shuffle operation

In-memory

Column

blocks

PE:

operations
Column

blocks

In-memory

PE:

operations

11/22

SDA design– hardware

• PE(processing element)-based architecture

– Scalable

– Flexible

• Dynamic re-configurable

– Resource on-demand

– Dynamically configure the kind and

Number of PEs according to workloads

• PE

– Single operation: filter/sort/join…

– Support variable data type

Memory layout defined by software

DDR4 DDR4 DDR4 DDR4

PCIE

DMA
crossbar

PE0 PE1 PEn CFG…

12/22

• Represent Filter conditions by postfix expression

• Highly parallel data path

conditions

SDA design: filter PE micro-architecture

……

F
ilte

r

F
ilte

r

F
ilte

r

F
ilte

r

F
ilte

r

F
ilte

r

8 rows of dataIn
te

rm
e

d
ia

te

re
s
u

lt

cmp cmp cmp cmp

combine

>A <B !=C

Input > A && <B && !=C

input

Combine with intermediate

result

13/22

SDA Implementation - hardware board

• Full-height, half-length
– Feasibility for large-scale deployment

• Xilinx KU115 FPGA

• ~50W total power

• 4 x 72bit DDR4, 2400MHz
– 8GB ~ 32GB capacity

– ~76GB/s bandwidth with ECC

– Big data applications are memory bandwidth bound

• PCI-e 3.0 x 8 lanes

14/22

SDA implementation – FPGA logic

Function LUT BRAM DSP

Filter 16k (2.5%) 67 (3%) 3 (~0%)

Sort 85k (12.8%) 331(15%) 150(2.7%)

Aggregate 11k (1.6%) 56 (2.5%) 20 (~0%)

Join 15k (2.4%) 600(27%) 0

Group by 95k (14%) 380(17%) 170(3%)

• Running at 300MHz

• RTL flow

15/22

SDA implementation – integration with distributed system

• Driver
– Configure PEs according to workload

– Allocate Queues for PE

– Maintain the views of PE

• APIs
– C++ library

SW
PE

view
Q Q Q Q Q…

HWPE …PE PE PE

16/22

Evaluation

• Setup

– Host
• Intel E2620 x2, 2.0Ghz, 12 cores

• 128GB memory

• Linux

– SDA
• 5 PEs: filter, sort, aggregate, join, group by

• 300MHz

17/22

Evaluation - filter

• Micro benchmark

– At most 10x than dedicated C++ comparator

0

20

40

60

80

100

120

140

160

180

90%
filtered

out

80%
filtered

out

60%
filtered

out

90%
filtered

out

80%
filtered

out

60%
filtered

out

long
5M records

string(len=7B)
5M records

T
im

e
(m

s
)

CPU FPGA

0

0.5

1

1.5

2

2.5

3

3.5

4

90%
filtered out

80%
filtered out

60%
filtered out

string（len=100B）

80K records

T
im

e
(m

s
)

CPU FPGA

• Real case: TPC-DS query3
• 25x faster than general C++ comparator

331

13.1

0

50

100

150

200

250

300

350

TPC-DS scale = 1 query3 filter [datatype
= long]

2750838 records totally and 43771
records after filter

T
im

e
(m

s
)

CPU FPGA

18/22

Evaluation-sort

• Micro benchmark

– At most 33x

90

17.6
50.6

215

672

563

663

735

0

100

200

300

400

500

600

700

800

long 1M records string(len=7B) 1M
records

string(len=15B)
1M records

string(len=100B)
1M records

P
e

rf
o

rm
a

n
c

e
(M

B
p

s
)

CPU FPGA

• Terasort

• 8x

11.3

1.4

0

2

4

6

8

10

12

Terasort data 8M records

T
im

e
(s

)

CPU

FPGA

19/22

Evaluation - real case query

• TPC-DS scale = 10， query3

• Execution time

– 55x

36

0.65
0

5

10

15

20

25

30

35

40

time

T
im

e
(S

)

Spark on 12-core server SDA

20/22

Related work

• Sorting
– GTX Titan : ~500M int64 on 1M inputs (https://nvlabs.github.io/moderngpu/mergesort.html)

– SDA: 84M int64 of one PE, 336 M of 4 PEs

– SDA is ~4x power efficiency than GPU

• GPU/FPGA accelerator for SQL kernels
– Lots of papers and some startups

• Only support a subset of data type and operation

– No work on whole TPC-DS query
• GPU is not good at complex data type, such as variable length string

• Most keys of real workload are variable length string, such as city, people and item

• ASIC accelerator for SQL operations
– Q100, implemented by 32nm ASIC http://arcade.cs.columbia.edu/q100-asplos14.pdf

– The accelerations kernels of SDA are similar to Q100, such as join, sort and aggregation.

– From applications perspective, Q100 is designed for data base, but SDA targets to data analysis(SparkSQL, HIVE)

– From design perspective, Q100 explore design space in-depth to balance power and performance. SDA is limited by current FPGA platform, such as memory
bandwidth, logic resource and max frequency. But thanks to FPGA, SDA can be dynamically reconfigured according to workload demands.

– Q100 has NOC for extremely efficient data pipeline. SDA only shares data via off-chip DRAM among kernels for flexibility.

– SDA is implemented by really hardware. And we design APIs for integrating SDA to real software system. the evaluations are in real system.

• Advantages of SDA
– Support all data type of TPC-DS

– General-purpose, support most operations of TPC-DS

– High performance benefited from
• Random memory access

• Data locality

• Customized pipeline and ALU

21/22

https://nvlabs.github.io/moderngpu/mergesort.html
http://arcade.cs.columbia.edu/q100-asplos14.pdf

Conclusion

• Present general-purpose big data accelerator

– Design for general-purpose big data analysis system, such as SparkSQL, HIVE

– Abstract SQL operations

– Propose the SDA hardware and software architecture

– Implement SDA hardware by FPGA

• SDA is also designed for distributed system

– Data flow program model

– Resource on-demand

• Demonstrate the feasibility of SDA for big data and AI

– SDA for AI on Hotchips 201422/22

