A 16nm 256-bit Wide 89.6GByte/s Total Bandwidth In-Package Interconnect with 0.3V Swing and 0.062pJ/bit Power in InFO Package

Mu-Shan Lin, Chien-Chun Tsai, Cheng-Hsiang Hsieh, Wen-Hung Huang, Yu-Chi Chen, Shu-Chun Yang, Chin-Ming Fu, Hao-Jie Zhan, Jinn-Yeh Chien, Shao-Yu Li, Y.-H. Chen, C.-C. Kuo, Shih-Peng Tai and Kazuyoshi Yamada

Taiwan Semiconductor Manufacturing Company, Ltd. DTP Taiwan

Outline

Motivation

- In-Package Interconnect Applications
- Advance Package Solutions

Introduction

- InFO Process
- Low Power Design Concept (2013-VLSI)
- System Architecture
- Circuit Descriptions
- Experimental Results
- Conclusion

© 2016 TSMC, Ltd

In-Package Interconnect Applications

■ LIPINCONTM: Low-voltage-In-Package-INter-CONnect

- High performance computing
 - Limit die size for yield
- In package memory
 - Higher level cache
- Heterogeneous integration
 - High speed SERDES

✓ Smaller form factor ✓ Shorter interconnect trace

High Performance Computing (HPC)

YIELD (%)

50

- Yield goes down exponentially as die size gets large
 - Building large dice is quite difficult and very costly

In Package Memory (IPM)

- Additional memory hierarchy between on-chip SRAM and off-chip DDR
 - Smaller capacity; higher bandwidth; faster latency

Advantages

- DRAM is more cost-effective than eDRAM
- Non-TSV allows fine pitch RDL and shorten trace between AP and IPM
- Short trace enable termination-less IO design

✓ Save main DRAM bandwidth by 60%

Memory Interface Development Trend

Higher Bandwidth; Lower Power; Lower Cost (TSV-less)?

[3] TSMC, 2013-OIP "SoC Memory.."

The Proven Path to Success

Advanced Package Solutions

- Why we choose FO-WLP?
 - Ultra-fine pitch RDL (W/S < 5um/5um)
 - Ultra-thin package (~0.6mm including BGA)
 - Smaller die size (no-TSV)
 - Suit for smartphones, tablets, and wearables

Semiconductor chip packaging market evolution

• The pace of innovation in chip packaging industry has never been faster!

→ Today driven by semiconductor company giants (Intel, Samsung, TI, STMicro, TSMC, Qualcomm...) along with "Top 5" biggest packaging subcontractors (ASE, Amkor, SPIL, STATschippac, PTI...)

TSMC Package Solution

InFO-WLP (INtegrated Fan-Out Wafer-Level-Package) VS FC-BGA

- More pin counts with smaller die size
- Lower parasitic resistance (thicker copper traces)
- Lower substrate loss (molding compound)
- Better thermal behavior (smaller form factor)

Project Target

- Demonstrate an in-package interconnect for in-package memory in InFO package
 - Less capable of memory process is considered
- Low-Power → Low-Latency → Small Area
 - Try to be transparent as possible
- 2Gbit/s/pin; 64Gbyte/s total bandwidth
- Power efficient IO
- Prompt and automatic timing-calibration scheme

- TSMC InFO side-by-side
 - 560um thickness of packaged chip including 3*RDL & BGA

Low power design concept ^{2013-VLSI by TSMC}

Reduced-power TX

- □ Low swing with lower VDDQ
- Termination-less

© 2016 TSMC, Ltd

Dynamic power only

[6] TSMC, 2013-VLSI, "An extra low-power.." [7] JESD8-28

Low power design concept ^{2013-VLSI by TSMC}

Reduced-power RX

- Clock-based sense amplifier
- No balance buffer
- Termination-less
- Dynamic power only

[6] TSMC, 2013-VLSI, "An extra low-power.."

© 2016 TSMC, Ltd

The Proven Path to Success

Low power design concept ^{2013-VLSI by TSMC}

Simplified design in DRAM

Get rid of DLL/PLL in DRAM

[6] TSMC, 2013-VLSI, "An extra low-power.."

System Architecture

InFO

(Memory

Size

524288=

64 bit*

4 cell*

4 ch)

SOC Interconnect MEM WRDATA[63:0] DQ[15:0] P2L_DQ[63:0] SUB-SUB-DMI[1:0] RDDATA[63:0] L2P_DQ[63:0] Channel Channel DQS_t/DQS_c [0] [0] DFI_CA[43:0] P2L_CA[43:0] CA[10:0] DFIĹCLK SUB-SUB-P2L_CK RST_n/CS_n/CKE Data Data CA CA CK_t/CK_c Align Align 512 address' Channel Channel CAL[9:0] SUB-SUB-CAL CAL Channel Channel DLL Channel[0] Channel[0] PLL BIST IIC BIST IIC _____2Gbps/ Slice 500Mbps/ 500Mbps/ **SDR** DDR SDR

64GByte/s

256-DQ

Bi-directional п DQ/DQS

Modular design

Easily scalable

Physical balance

© 2016 TSMC, Ltd

13

The Proven Path to Success

© 2016 TSMC, Ltd

TSMC Property

[6] TSMC, 2013-VLSI, "An extra low-power.."

TSMC Property

© 2016 TSMC, Ltd

15

[6] TSMC, 2013-VLSI, "An extra low-power.."

© 2016 TSMC, Ltd

16

TSMC Property

- Sub-CAL(calibration)-channel architecture
- □ 3 DLLs (TX/RX/RPT)
- Prompt and automatic
 - Lock time < **1us**
- 10-pin overhead shared by 64-DQ
 - But scalable

© 2016 TSMC, Ltd

Latency-cost Degrades System Efficiency

- De-/Serialization ratio: 4
- DBI enable (data-bus-inversion)

18

Temperature Drift Monitoring Scheme

- □ Temperature drift →
 Timing variation →
 Performance degradation
- Leveraging DLL architecture
- Periodic check (1ms) in background
- Alert issue if drift exceed the tolerance

Pad Plan

- Compact pad plan with perfect-match trace length
- RDL routing density: 1*RDL/10um

Boundary Scan Strategy

- KGD (Known-Good-Die) Contactless IO
 - Compatible with IEEE1149.1

© 2016 TSMC, Ltd

- Each die builds in self TAP controller
- Support contactless LIPINCON-IO open/short test individually

hstrate

Boundary Scan Strategy

- KGS (Known-Good-Stack) Interconnect
 - Cascade TAP structure and control in sequence
 - Support inter-connectivity test through TAP/Bscan cells
 - Capable of per pin diagnosis

22 © 2016 TSMC, Ltd

Packaged-Die Photo After InFO

Fan-out to get the required direct-access BGA balls [BGA ball side] [7mm*7mm]

KGD Shmoo Plot

SOC/MEM-PHY loopback BIST (Logic VDD vs. Frequency)

□ VDDQ=0.3V

- 256-DQ toggle
- DBI enable
- PRBS

TSMC Property

The Proven Path to Success

KGS Shmoo Plot

SOC-to-MEM Write/Read BIST (Logic VDD vs. Frequency)

□ VDDQ=0.3V

- □ 256-DQ toggle
- DBI enable
- PRBS

KGS Shmoo Plot

SOC-to-MEM Write/Read BIST (IO-VDDQ vs. Frequency)

□ VDD=0.8V

- **256-DQ toggle**
- DBI enable

PRBS

Capable of Eye-ploting

- 0.3V Swing is critical to SSO under wide bus application
 - How to ensure signal integrity on the un-probed interconnect IO?

Power Breakdown

- Base on simulation results with 100% toggling conditions
- LIPINCON-IO power efficiency:
 0.062pJ/bit (consider one single-end IO)
- LIPINCON-PHY power efficiency:
 0.424pJ/bit

Blocks	Power Consumption	Power Efficiency	Percentage
Digital (0.8V)	110.00	0.215	50.7%
LIPINCON-IO (0.8V/0.3V)	53.97	0.105	24.9%
DCDL (0.8V)	31.52	0.062	14.5%
NPL (0.8V)	20.00	0.039	9.2%
Replica cell (0.8V)	1.65	0.003	0.8%
SUM	217.141	0.424	100.0%
	(mW)	(mW/Gb/s)	

Conclusion

- An in-package interconnect for in-package memory application in InFO package has been demonstrated
 - Technology: TSMC 16FF + InFO
- 89.6GByte/s total bandwidth is achieved with 256-DQ operating in 2.8Gbit/s and 0.3V-swing
 - Low power: IO (0.062pJ/bit); PHY (0.424pJ/bit)
 - Low latency: Write (4.75T+1.5T=6.25T); Read (2+1.875=3.875T)
- 0.3V signal integrity on the un-probed IO has been clarified
 - 420ps (**0.84UI**) Eye width; 225mV (**75%**) Eye height
- Prompt and automatic timing-calibration scheme

Acknowledgement

The authors would like to thank TSMC "InFO-IP" team for InFO back-end support, TSMC "IPPM" team for measurement support, and "System-BD" team for business help. The authors would also like to specially thank "Mentor Graphics" for boundary scan design collaboration.

Reference

- [1] Intel, 2015-ISSCC, "The Xeon® Processor E5-2600 v3: A 22nm 18-Core Product Family"
- [2] Google, 2015-VLSI, "System Challenges and Hardware Requirements for Future Consumer Devices: From Wearable to ChromeBooks and Devices in-between"
- [3] TSMC, 2013-OIP "SoC Memory Interfaces. Today and tomorrow at TSMC"
- [4] 2012 Business Update "3DIC & TSV interconnects"
- [5] TSMC, 2012-IEDM, "High-Performance Integrated Fan-Out Wafer Level Packaging (InFO-WLP): Technology and System Integration"
- [6] TSMC, 2013-VLSI, "An extra low-power 1Tbit/s bandwidth PLL/DLL-less eDRAM PHY using 0.3V low-swing IO for 2.5D CoWoS application"
- [7] JESD8-28 "300mV interface"