

The Path to Embedded Vision & Al using a Low Power Vision DSP

Yair Siegel, Director of Segment Marketing Hotchips – August 2016

www.ceva-dsp.com

Presentation Outline

Introduction

The Need for Embedded Vision & AI

Vision Processor

Deep Learning Path to Low Power AI Devices

Summary

CEVA – Licensor of ultra-low-power signal processing IP's for embedded devices

>7 Billion CEVA-powered devices shipped world-wide

Corporate Introduction

Corporate Facts

- Headquartered in Mountain View, Calif.
- Publicly traded -NASDAQ:CEVA
- 273 employees, >200 eng.
- Profitable, cash positive, >\$138M cash
- World Leading IP Supplier since 1991

Worldwide Operations

US (Mountain View, CA, Austin, TX & Detroit, MI), Israel, Ireland, France, U.K, Sweden, China, Taiwan, Korea & Japan

CEVA Value Chain

CEVA Inc. All rights reserved

The Need for Embedded Vision & Al

Security & Surveillance

ADAS & Autonomous Cars

Visual Perception & Analytics

Augmented Reality

Drones

CEVA-XM4 Vision DSP Highlights

- 1.5GHz max frequency @28nm HPM
 - 14 stage deep pipeline
- >128 MACs, 8-way VLIW, 4096-bit vector engine
- 32-way parallel random memory access
 Enables serial code vectorization
- Sliding window & sliding pattern mechanisms
 Efficient 2-dimension data processing
- Silicon proven, 15+ design wins for variety of products
- Completed ISO 26262 compliance & process certification

CEVA-XM4 vision processor wins

CEVA-XM4 Performance Highlights

- Fixed- and floating-point math
 - Available both in vector and scalar structures
- 8/16/32/64-bit fixed point precision
- Native non linear operations in single cycle
 - $\blacktriangleright \frac{1}{x}, \sqrt{x}, \sqrt{x}, \sqrt{x}$
 - Supported both in fixed and float operations
- Multiple 128 or 256-bit AXI interfaces
- Extendible ISA

	Multipliers per cycle
Scalar fixed-point	4
Scalar Floating-point	4
Vector fixed-point	128
Vector Floating-point	16

High Performance, yet flexible in precision and operation

CEVA-XM4 Block Diagram

CEVA Vision Platform Layers

CEVA-ToolBox[™] - Eclipse based SW Dev. Tools CEVA[®]

- Advanced Eclipse-based IDE
- Optimizing C/C++ tailored compiler
 - Auto vectorization
 - Extensive Vec-C support
 - C language extensions in OpenCL-like syntax
 - Vector types for C/C++ short8, ushort32,...
 - Vectorization from operators
- Linker and Utilities
- Automatic Build Optimizer
- CEVA-Xtend GUI Instruction builder
- Built-in Debugger, Simulator & Profiler
 - Target Emulation dev. kit

Complete Software Development tools.

Focused on ease of use and quick SW porting for performance optimization

CEVA Inc. All rights reserved

Parallel Random Memory Access Mechanism

- CEVA-XM4 scatter-gather capability enables load/store vector elements from/into multiple memory locations in a single cycle
 - Enables serial code vectorization
 - Able to load values from 32 addresses per cycle
- Example: Image histogram requires random accesses to memory per pixel
 - Each "value" (within a vector) can generate an address that allows it to vectorize/parallel the operations into a multiple operation within a single cycle

CFVΔ

Histogram Power Analysis

Others

DMEM

DMSS

PMEM

PMSS

Core

CEVA-XM4 Power Consumption per

Block Running Histogram

Using Special Histogram HW Support

 Without Histogram Special HW Support (convential DSP / CPU Approach)

Special histogram HW consumes 1.89x higher power per cycle, but kernel is 100x faster \rightarrow ~50x better power efficiency for entire calculation!

Sliding-Window Data Processing Mechanism

- CEVA-XM4 processes 2D data efficiently
- Takes advantage of pixel overlap in image processing by reusing same data to produce multiple outputs
 - Significantly increases processing capability
 - Saves external memory bandwidth and frees system buses for other tasks
 - Reduces power consumption

Input Data Reuse Example

The vector instruction performs the arithmetic operation multiple times in parallel (producing multiple results). The next sliding-window operation is offset by a step from the previous operation.

Sliding-Window Pattern Mechanism

- Sliding-window pattern (i.e. sliding pattern) efficiently handles sparse filters
- Sparse filters are defined as filters that contain some coefficients equal to zero
- Instead of multiplying the input data by zero, the sliding pattern skips zero coefficients and improves efficiency (and keeps power low)

Sliding-Window Pattern Example

- Example below describes a sparse filter
 - ~45% non-zero coefficients
- Achieves 92% multiplier utilization, completing filter in 3 cycles
- "Standard" implementation: ~55% multiplier utilization in 5 cycles

Sparse Filter

Sliding Pattern

Sliding Window

Sliding-Window Pattern Power Savings

Relative Power Consumption

CEVA-XM4 "Sliding Window"CEVA-XM4 "Sliding Pattern"

CEVA®

Sliding Window, Sliding Pattern Power Savings CEVA

■ CPU

GPU

- CEVA-XM4 Scalar Only
- CEVA-XM4 "Sliding Window"
- CEVA-XM4 "Sliding Pattern"

CEVA Deep Neural Network (CDNN2)

- ▶ 2nd gen SW framework support
 - Caffe and TensorFlow Frameworks
 - Various networks*
 - All network topologies
 - All the leading layers
 - Variable ROI
 - "Push-button" conversion from pre-trained networks to optimized real-time
 - Accelerates machine learning deployment for embedded systems
 - Optimized for CEVA-XM4 vision DSP

(*) Including AlexNet, GoogLeNet, ResNet, SegNet, VGG, NIN and others

CEVA Network Generator

Real-Time CDNN2 Application Flow

Real-Time CNN Object Recognition Demo CEVA

CEVA Inc. All rights reserved

Vision & Deep Learning SoC Example

Typical SoC for recording devices such as action / dash / surveillance cameras

Enables OEM differentiation by adding highest-end camera features

Ultra low power: Full vision system below 1w@28nm

Brite Semi Vision & Deep Learning SoC

AR/VR Ref System Example using Inuitive <u>NU4000</u>

High-end AR/VR system supporting depth sensing, deep learning, SLAM and vision, but cutting power by a factor

CEVA®

Why DSP Is Better as Vision Processor? CE

- Domain-specific architecture focused on computer vision
 - Dedicated ISA & mechanisms enable higher perf & utilization
 - 8-way VLIW up to 8 separate instructions combined in parallel
 - 32-way parallel load-store maintainable per cycle
- Combination of strong vector and scalar types of code
 - CPU good mostly in scalar code
 - GPU good mostly for parallel portion, weak on memory accesses
- Enables flexible fixed-point math for better power efficiency
 - Combines floating-point for time-to-market and higher dynamic range
- Maximizing local data reuse, limiting DDR memory bandwidth
 - Significant memory power saving, GPU not able to utilize well
 - Enables more efficient deep learning algo development

CEVA-XM4 in combination with SW platform saves time-to-market and extends device battery life

* vs. Mobile GPU

CEVA®

Welcome to visit us at the demo table to hear more **Thank You**

www.ceva-dsp.com

Contact: Yairs@ceva-dsp.com