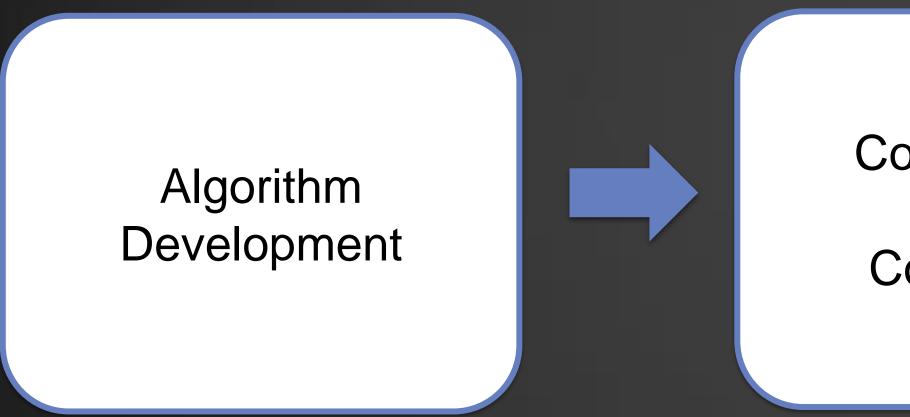
From Model to FPGA: Software-Hardware Co-Design for Efficient Neural Network Acceleration

Kaiyuan Guo^{1,2}, Lingzhi Sui¹, Jiantao Qiu², <u>Song Yao¹</u>, Song Han^{1,3}, Yu Wang^{1,2}, Huazhong Yang¹ ¹ DeePhi Technology ² Tsinghua University, ³ Stanford University

Acknowledgement: Dongliang Xie and DeePhi Engineering Team

DeePhi Tech

- ightarrow
- Founded by Song Yao, Yu Wang, and Song Han in March 2016 ullet
- FPGA-based solution provider for deep learning ullet

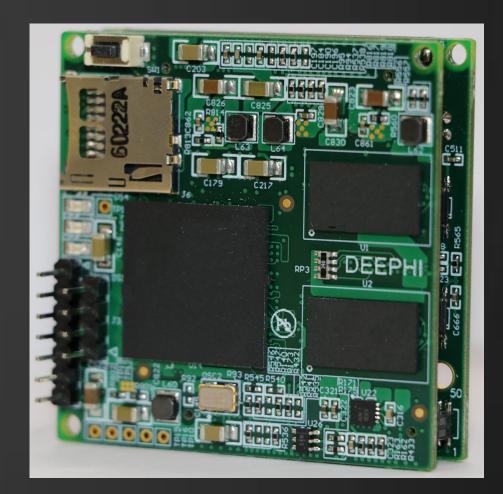


 Automatic compilation tool chain + mini board/IP ✓ Architecture for CNN and RNN-LSTM

About DeePhi Tech

Discovering the philosophy behind deep learning computing

Compression Compilation



Supporting detection, tracking, object/speech recognition, translation, and etc.

- New Platform Expected for Deep Learning
- Trend in Neural Network Design
- Platform Selection
- Overall Flow
- Model Compression: Useful in Real-World Networks
- Activation Quantization: 8 Bits Are Enough
- Aristotle: Architecture for CNN Acceleration
- Descartes: Architecture for Sparse LSTM Acceleration
- Conclusion

Drone

Client

Requirements **Real-time object recognition**

> Limitation **Battery capacity**

Low-power high-performance platform for deep learning is urgently needed

Page 4

New Platform Expected for Deep Learning

- Video Surveilliance
- Edge Requirements
- **Real-time video analysis**
- Limitation High maintenance cost

Speech Recognition Cloud

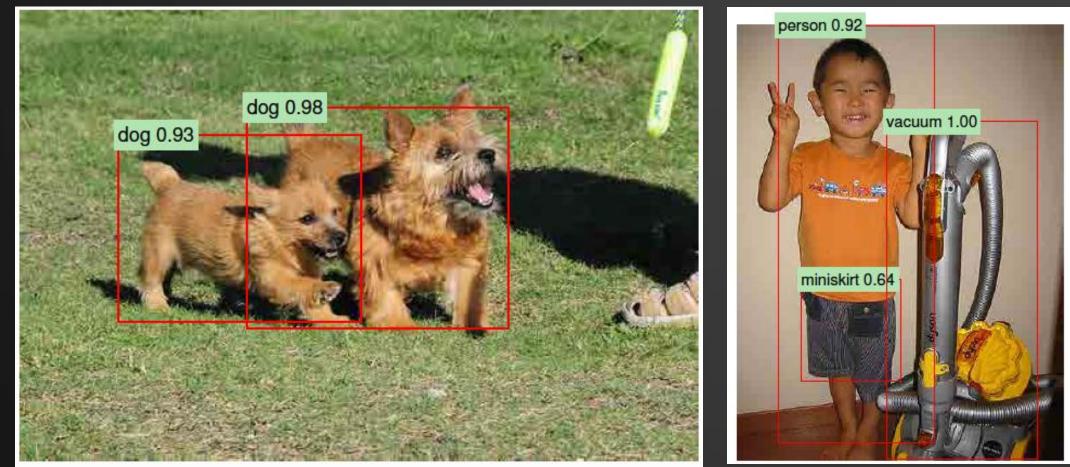
Requirements Low latency

Limitation High maintenance/cooling cost

CNN for Object Recognition ightarrow



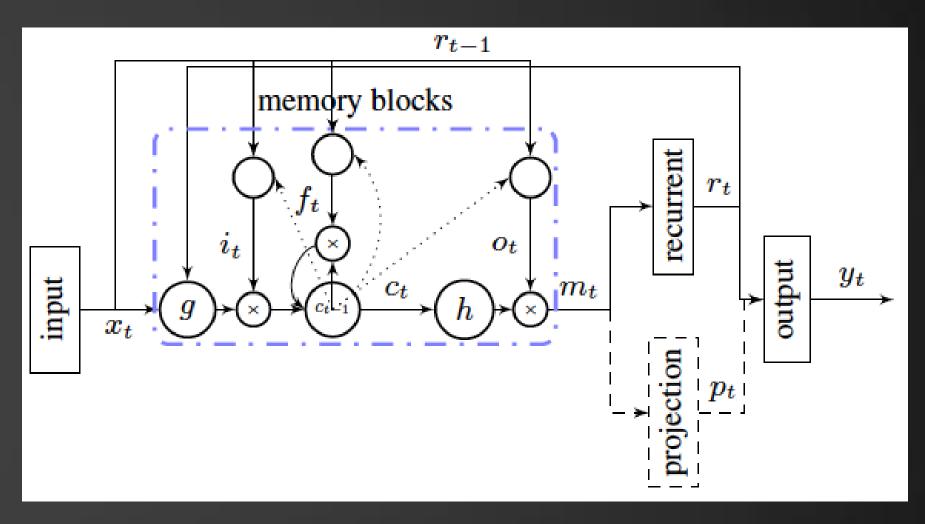
Source: Ross Girshick, "Fast R-CNN"



Source: Ross Girshick et al., "R-CNN"

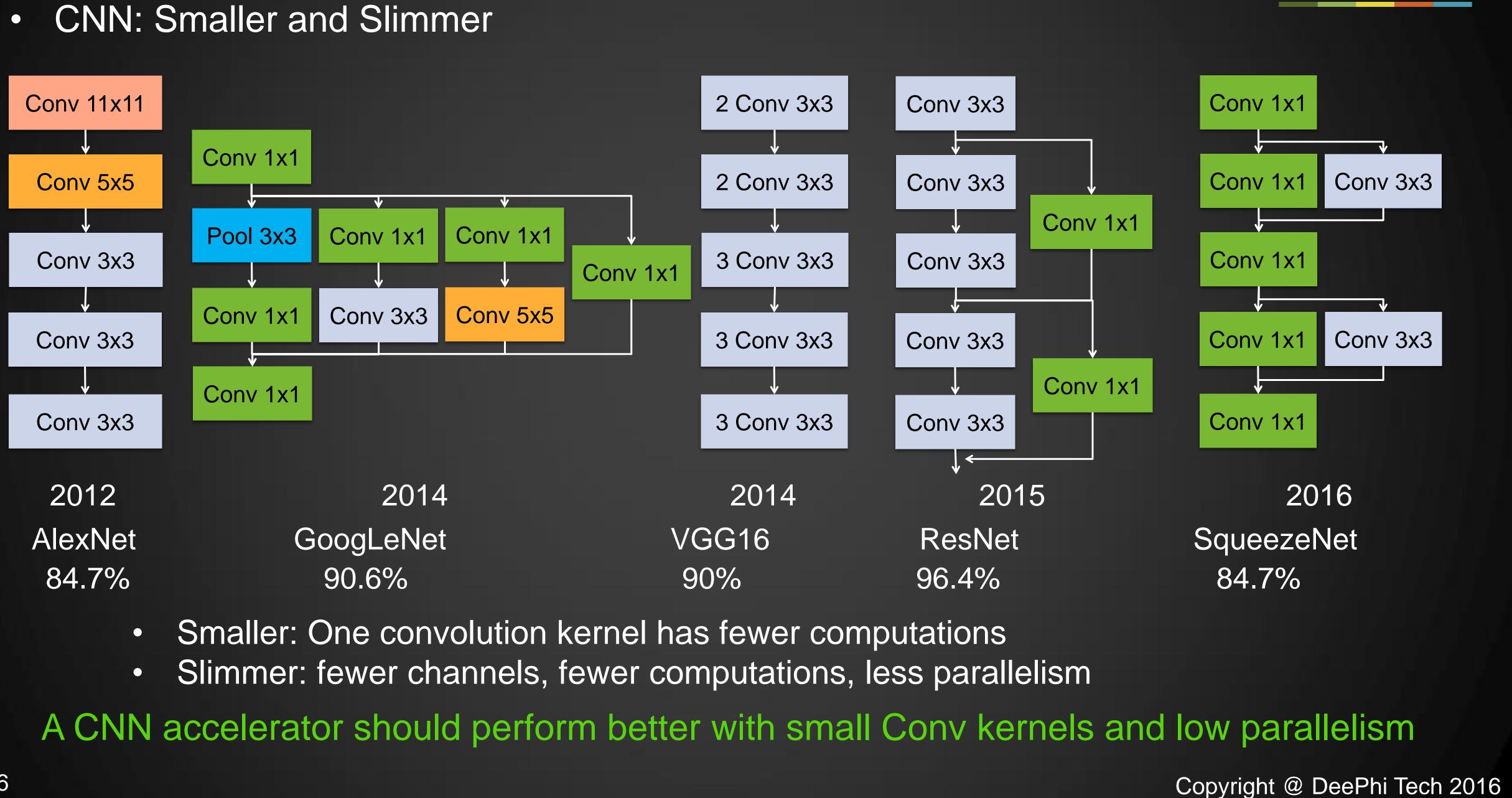
Trend in Neural Network Design

RNN-LSTM for Speech Recognition ullet

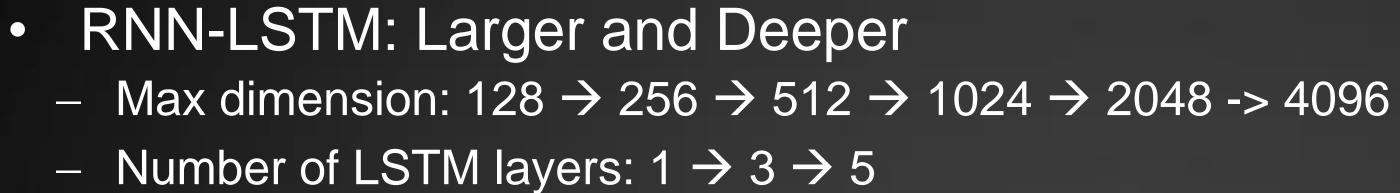


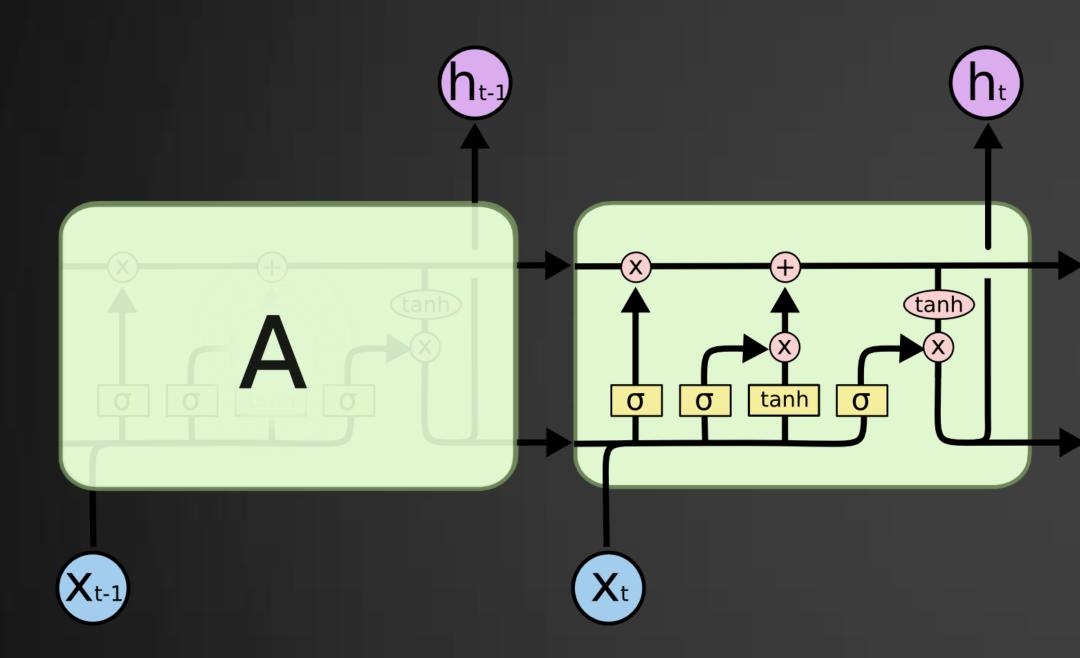
Source: Hasim Sak et al.," Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition"

Frameworks for different applications have not been unified



Trend in Neural Network Design



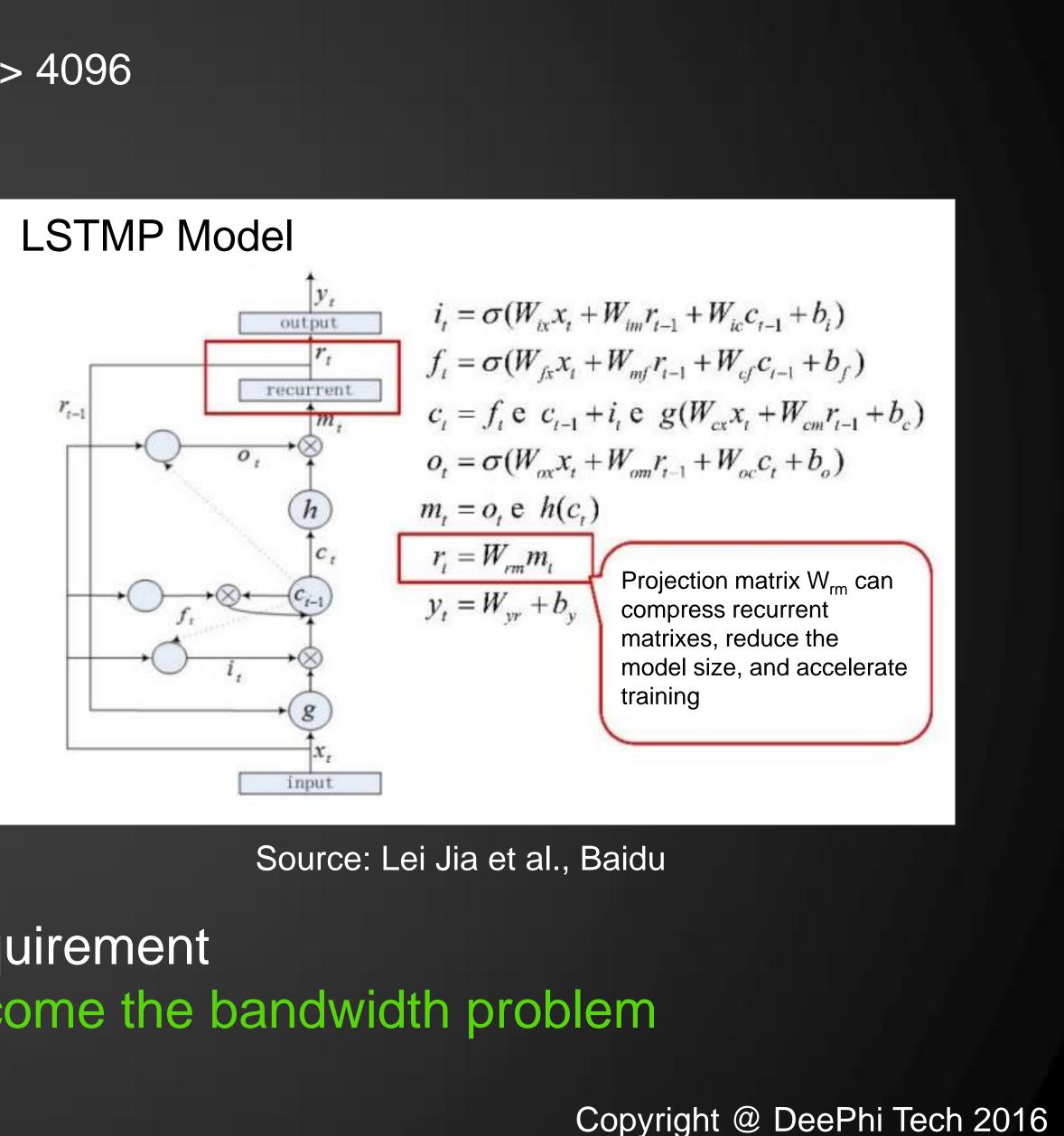


Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Larger model size, higher bandwidth requirement

Page 7

Trend in Neural Network Design



An RNN-LSTM accelerator should overcome the bandwidth problem

FPGA is good for inference applications

- CPU: Not enough energy efficiency
- •
- DSP: Not enough performance with high cache miss rate •
- ASIC has high NRE: No clear huge market yet
- ASIC has long time-to-market but neural networks are in evolution
- FPGA
 - Acceptable power and performance
 - Supports customized architecture
 - High on-chip memory bandwidth
 - Relatively short time to market
 - High reliability

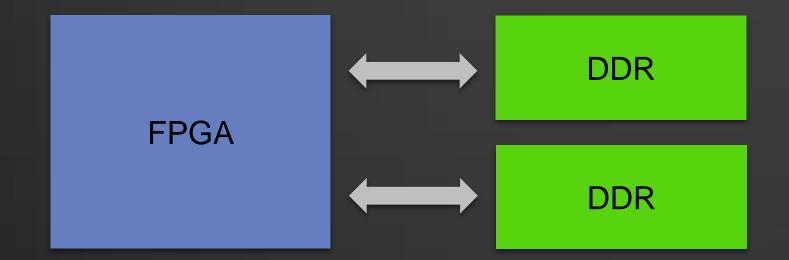
FPGA-based deep learning accelerators meet most products' requirements

Platform Selection

GPU: Extremely efficient in training, not enough efficiency in inference (batch size = 1)

Software-Hardware Co-Design is Necessary

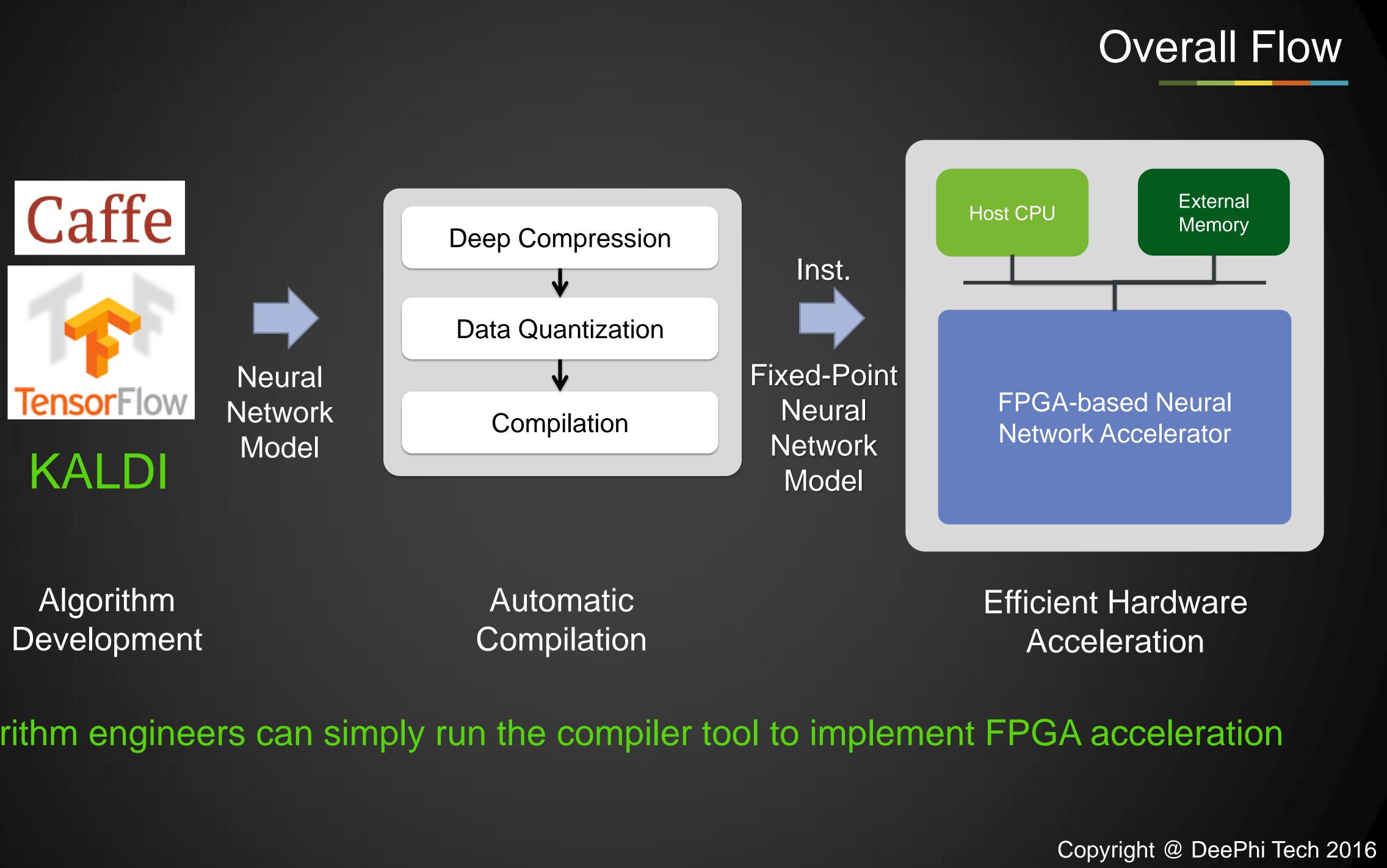
- Great redundancy in neural networks •
 - VGG16 network can be compressed from 550MB to 11.3MB
 - FPGA has limited BRAM and DDR bandwidth ____
- Different neural network has different computation pattern
 - CNN: Frequent data reuse, dense
 - DNN/RNN/LSTM: No data reuse, sparse _____
 - Different architectures must adapt to different neural network _____
- Neural networks are in evolution
 - Architecture must adapts to new algorithms



Platform Selection

Limitations of FPGA platform Limited BRAM size

Limited DDR Bandwidth



Algorithm engineers can simply run the compiler tool to implement FPGA acceleration

Page 10

Traditional FPGA-based Acceleration Faced Two Major Problem

- Long development period ullet
 - Hand coded: 2 3 months
 - OpenCL and HLS: 1 month
- Insufficient performance and energy efficiency •

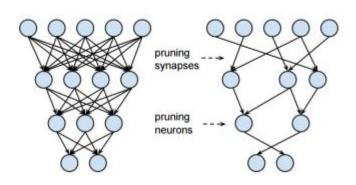
DeePhi's workflow solves the two problems in FPGA acceleration

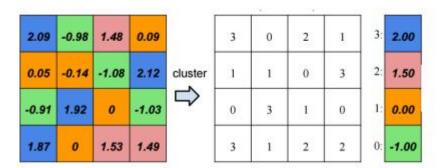
- Compiler + Architecture instead of OpenCL
 - Algorithm designer need to know nothing about hardware
 - Generates instructions instead of RTL code
 - Compilation in 1 minute
- Much higher performance and energy efficiency
 - Hand-coded IP core and efficient architecture design

Overall Flow

Model Compression: Useful in Real-World Netoworks Deep Compression: Useful for RNN-LSTM and FC layers in CNN

Small DNN models are critical.





pruning

weight sharing

Network	Original Size	Compressed Size	Compression Ratio	Original Accuracy	Compressed Accuracy			
AlexNet	240MB -	→ 6.9MB	35x	80.27% -	→ 80.30%			
VGGNet	550MB -	→ 11.3MB	49x	88.68% -	→ 89.09%			
GoogleNet	28MB -	→ 2.8MB	10x	88.90% -	→ 88.92%			
SqueezeNet	4.8MB -	→ 0.47MB	10x	80.32% -	→ 80.35%			

Source: Song Han et al., Stanford University

With re-training, we can achieve:

- < 10% sparsity for real-world FC layers in CNN
- ~ 15% sparsity for real-world LSTMs
- 4 bit weight quantization with no accuracy loss

Deep Compression is useful in real-world neural networks and can save a great deal of computations and bandwidth demands

ightarrow

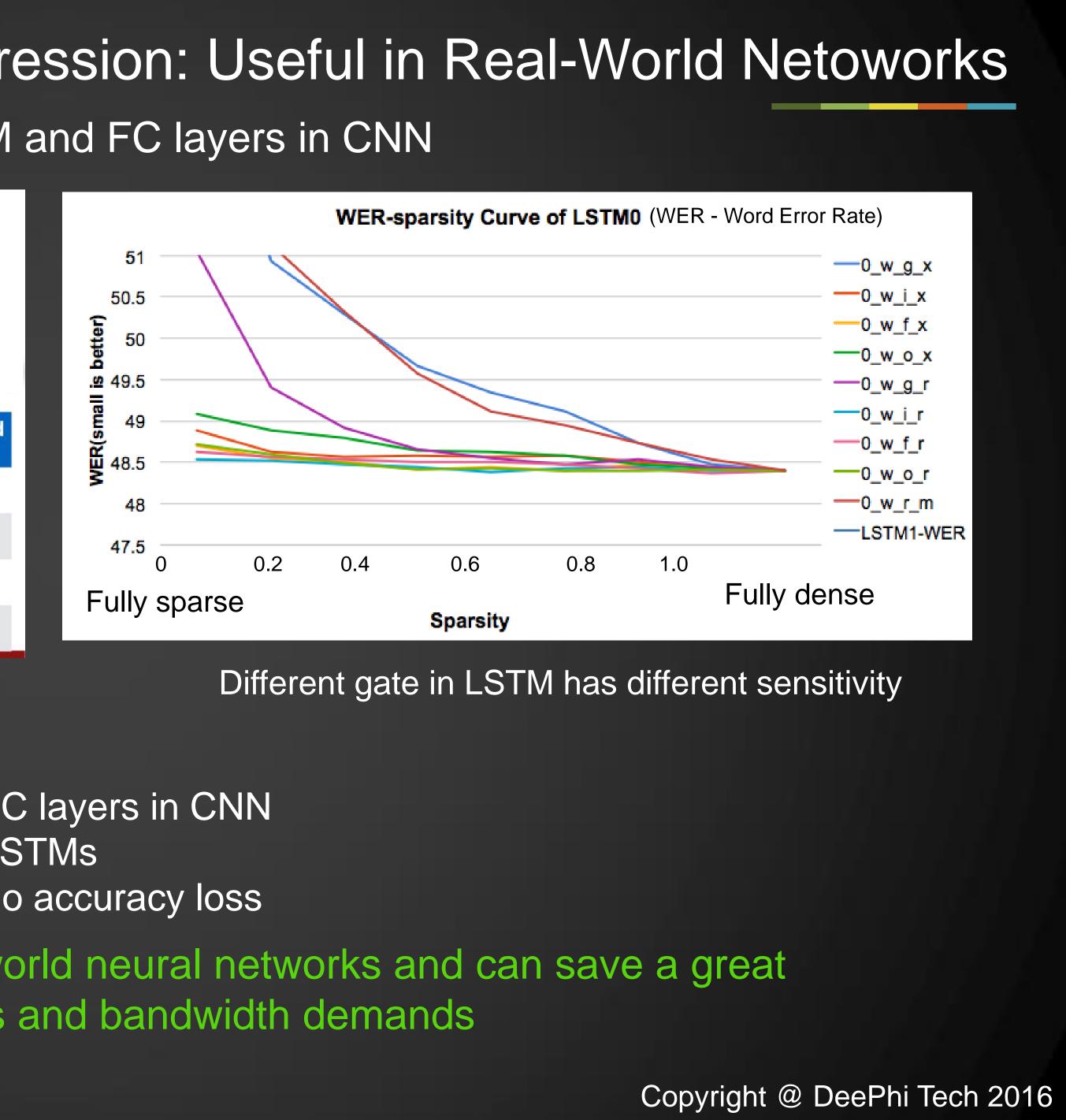


Image classification on ILSVRC 2012

		FP32	FIXED-16		FIXED-8	
		ORIGINAL	RAW	RE-TRAIN	RAW	RE-TRAIN
	Top-1	65.77%	65.78%	67.84%	65.58%	67.72%
VGG16	Top-5	86.64%	86.65%	88.19%	86.38%	88.06%
	Top-1	68.60%	68.70%	68.70%	62.75%	62.75%
GoogLeNet	Top-5	88.65%	88.45%	88.45%	85.70%	85.70%
SquaazaNlat	Top-1	58.69%	58.69%	58.69%	57.27%	57.27%
SqueezeNet	Top-5	81.37%	81.35%	81.36%	80.32%	80.35%

Object detection on PASCAL VOC 2007 ulletR-FCN: < 2% mAP loss without re-training using 8-bit quantization — YOLO: < 1% mAP loss without re-training using 8-bit quantization _____

Activation Quantization: 8 Bits Are Enough

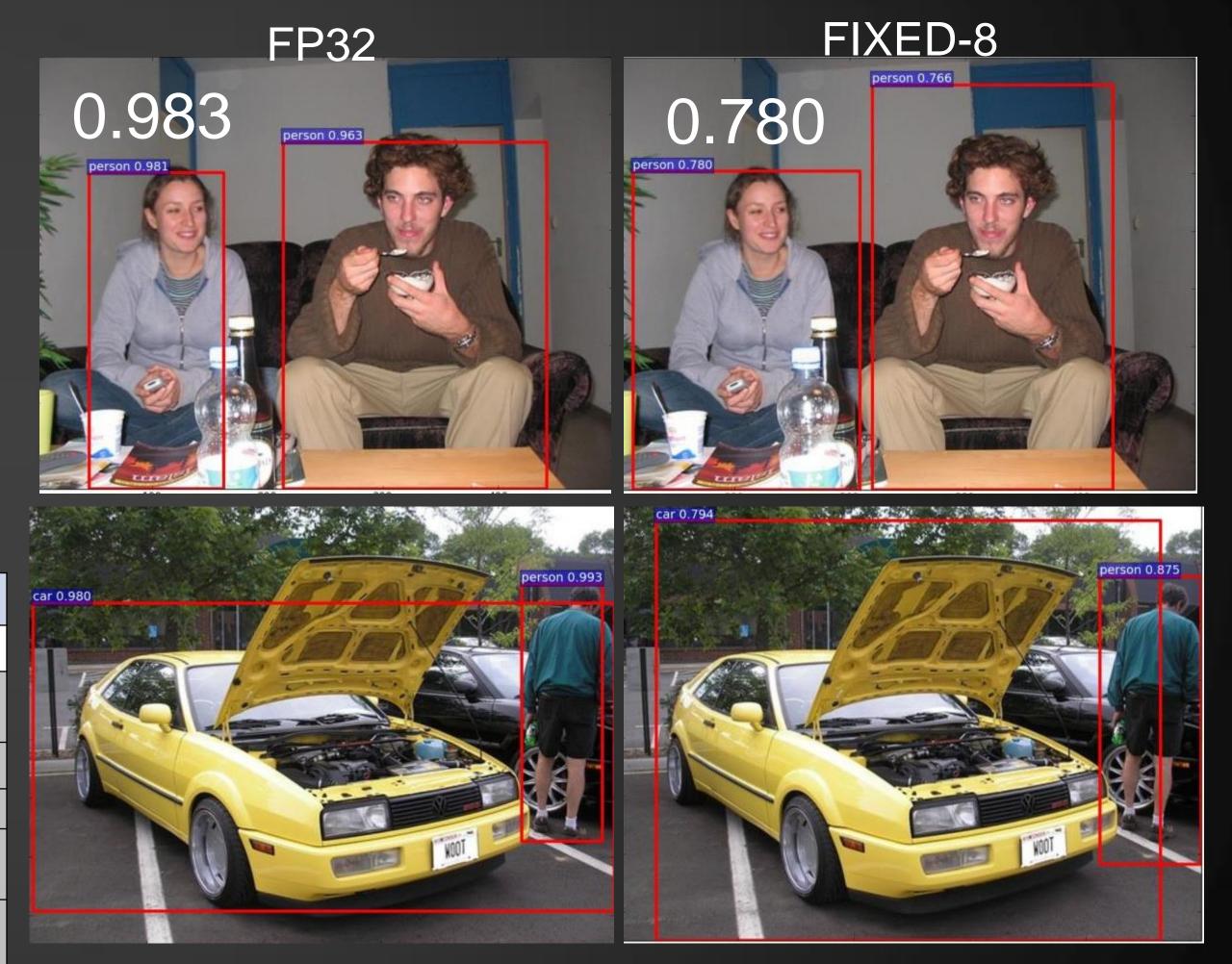
Image classification: Results comparison ightarrow

Goog	LeNet	Squee	zeNet	VGG16		
FP32	FIXED-8	FP32	FIXED-8	FP32	FIXED-8	
Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	Shetland Sheepdog	
Collie	Collie	Collie	Collie	Collie	Collie	
Borzoi	Borzoi	Border collie	Papillon	Borzoi	Borzoi	
Afghan hound	Pomeranian	Afghan hound	Border collie	Afghan hound	Papillon	
Pomeranian	Afghan hound	Papillon	Pomeranian	Papillon	Australian terrier	
 Most differences are in low-priority guesses 						

Page 14

Activation Quantization: 8 Bits Are Enough

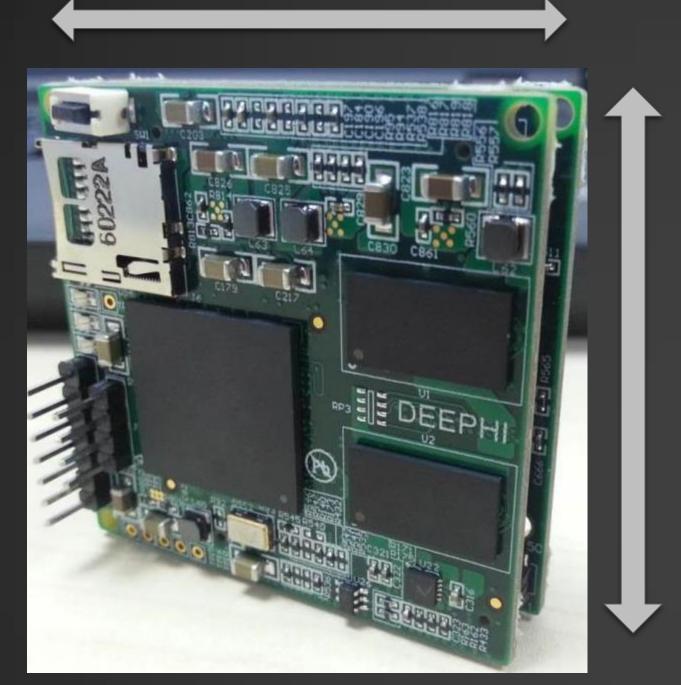
Object detection: Results comparison – SqueezeNet + R-FCN



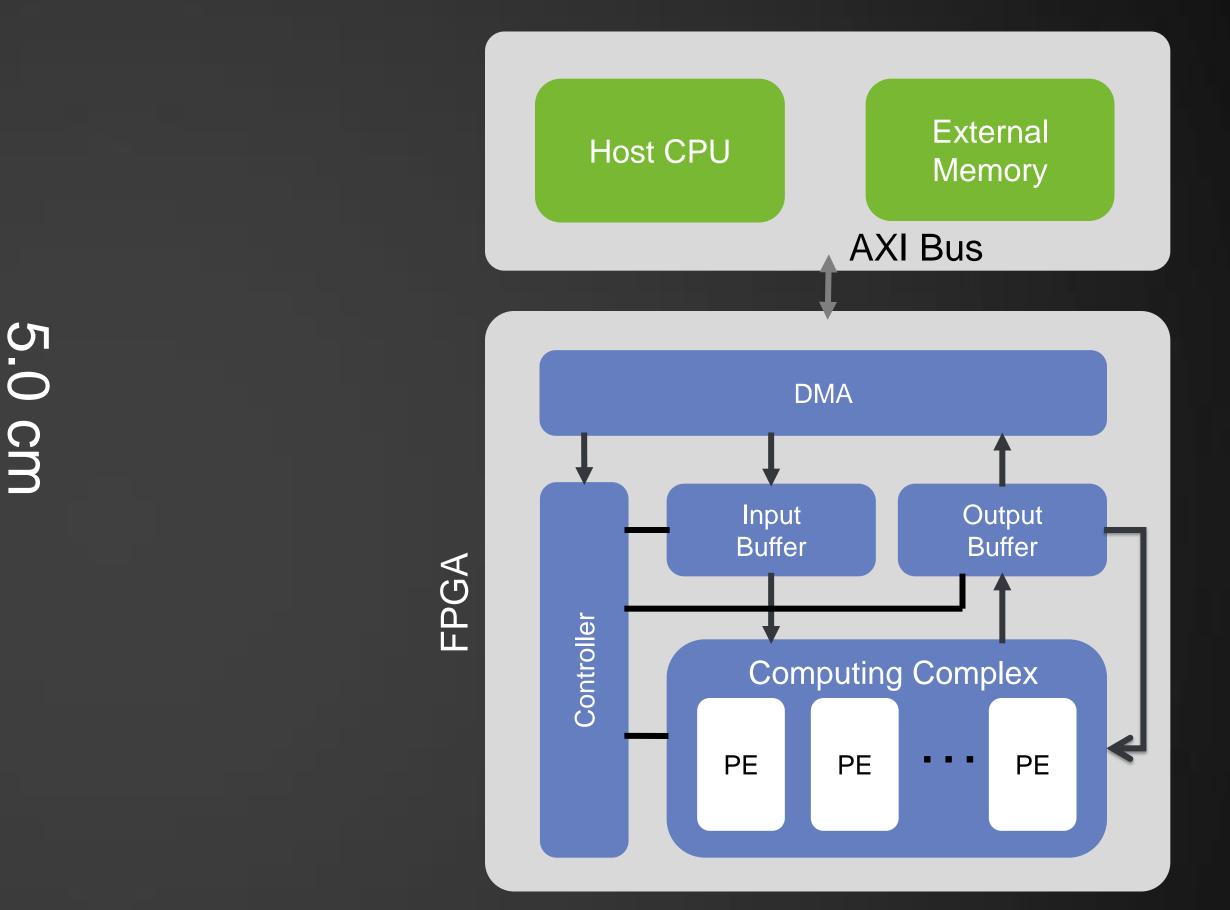
Similar proposal results with lower confidence

Aristotle: Architecture for CNN Acceleration

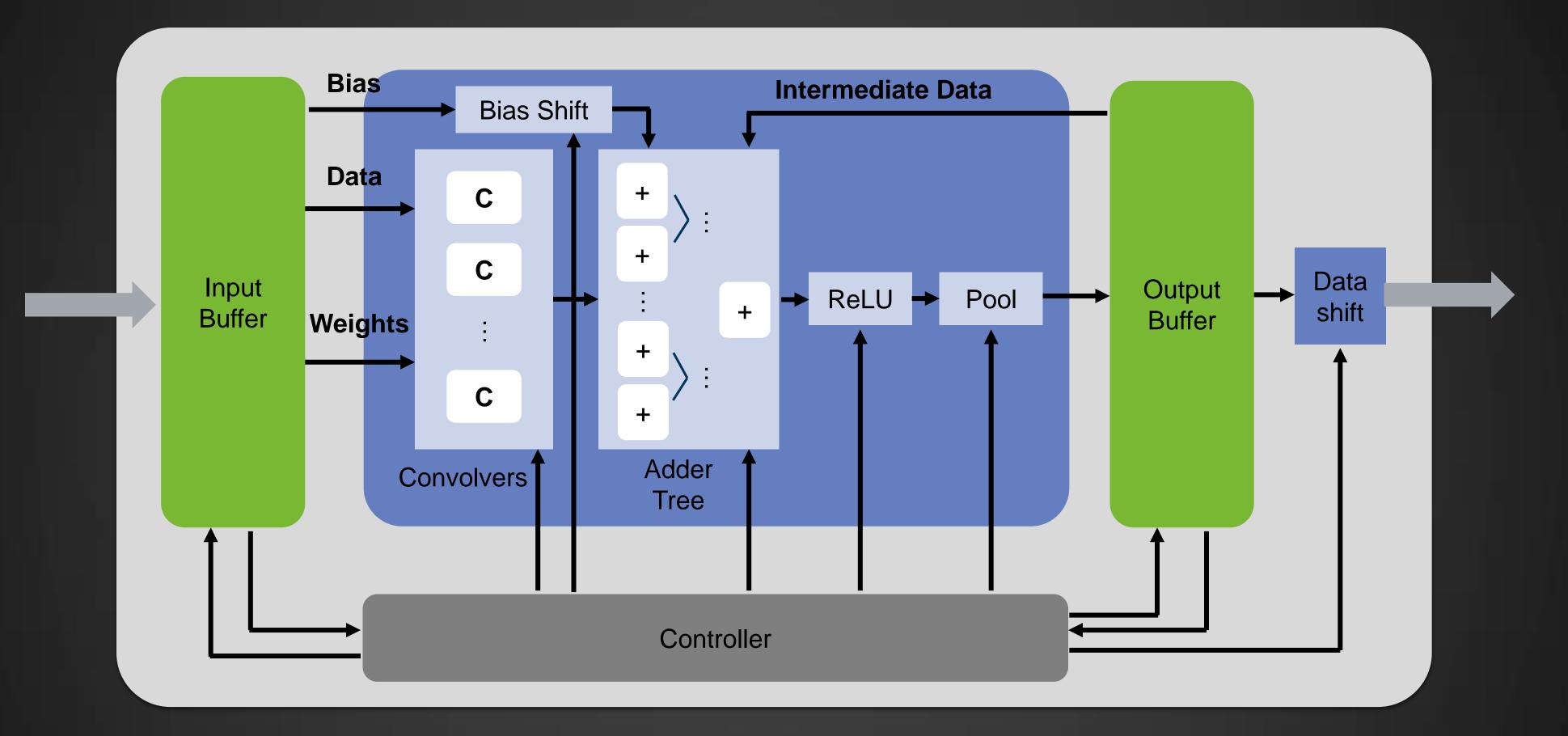
5.0 cm



- Based on Zynq 7000 Series FPGA
- Optimized for 3x3 Conv kernels
- Supports different Conv stride sizes
- <u>Scalable</u> design (1PE, 2PE, 4PE, 12PE) on Zynq 7010/7020/7030/7045
- Supports mainstream deep learning object framework: R-FCN, YOLO, and etc



) on Zynq 7010/7020/7030/7045 ect framework: R-FCN, YOLO, and etc



- ullet
- Fully pipeline without intermediate data load/store
- Supports dynamic-precision quantization

Aristotle: Processing Element Architecture

Integrate convolvers, adder tree, non-linearity, and pooling units into one PE

Caffemodel -Prototxt

Parser

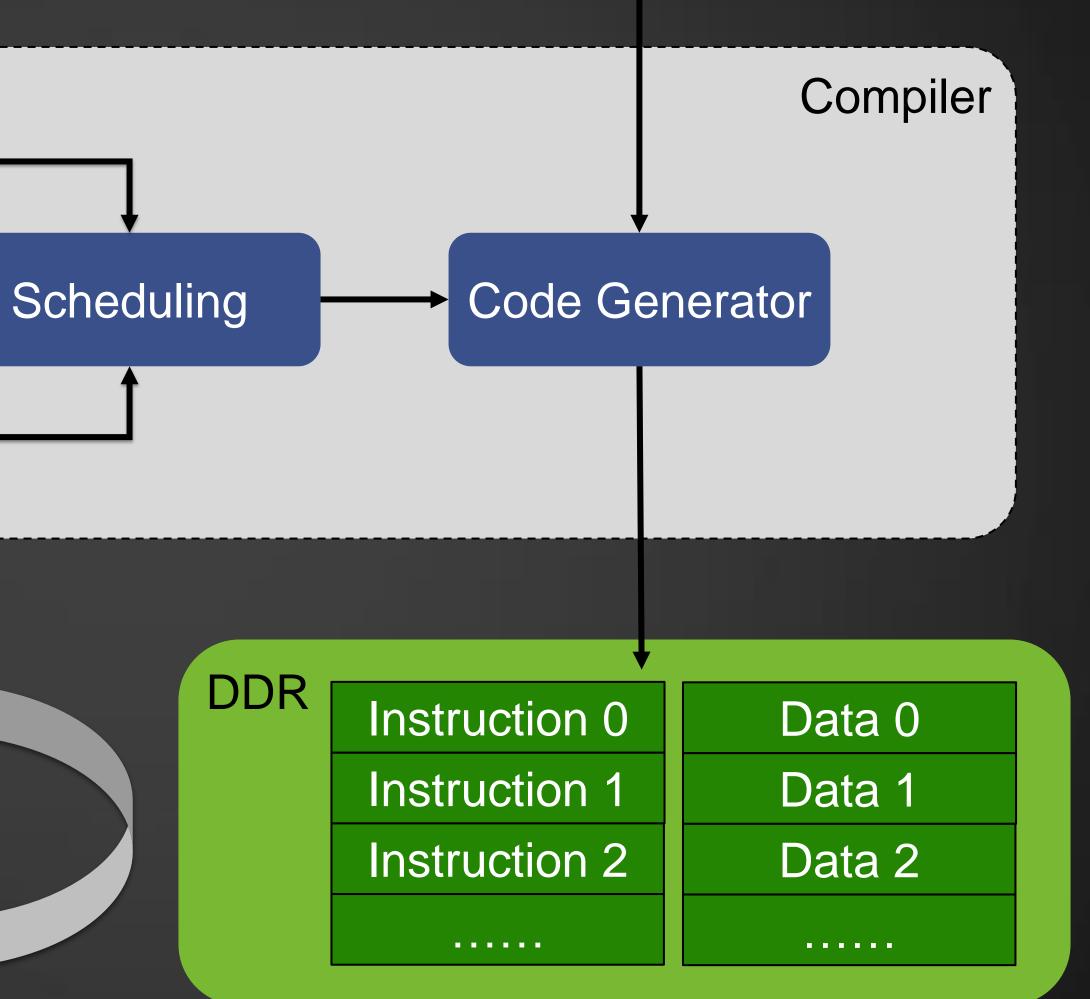
Hardware Parameter

Host CPU

Neural Network Accelerator

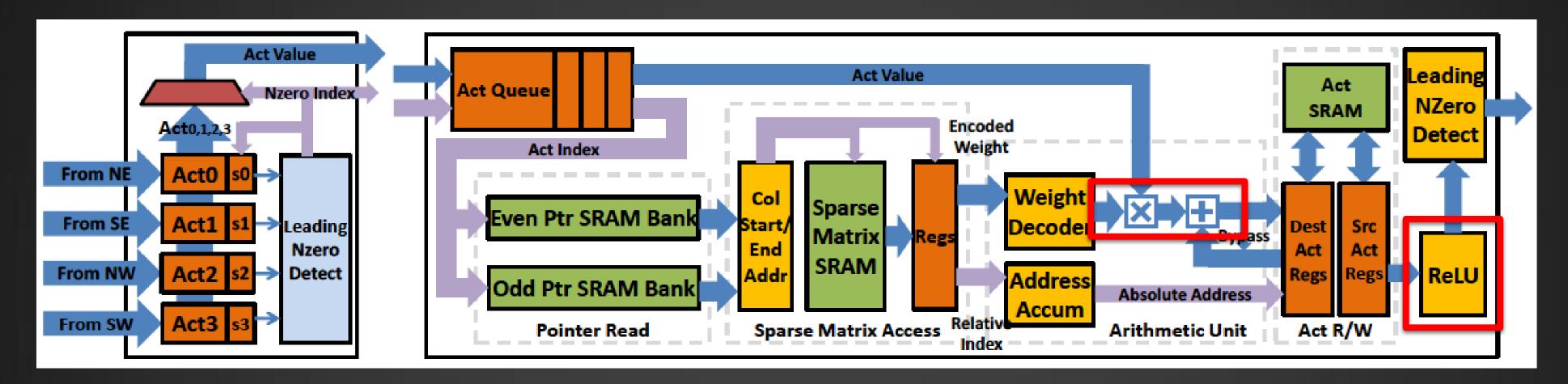
From Model to Instructions

Quantized Model



Descartes: Architecture for Sparse LSTM Acceleration

EIE (Efficient Inference Engine): Extremely efficient, but not for FPGA ightarrow- 102 GOPS@600 mW, 800MHz



EIE chip (64PE)

- 10.13 MB SRAM
- 64 Multiplier ullet
- 800MHz \bullet

Xilinx KU060

- \bullet
- \bullet
- LSTM cannot utilize activation sparsity

Designed by Song Han et al. from Stanford University and published on ISCA 2016

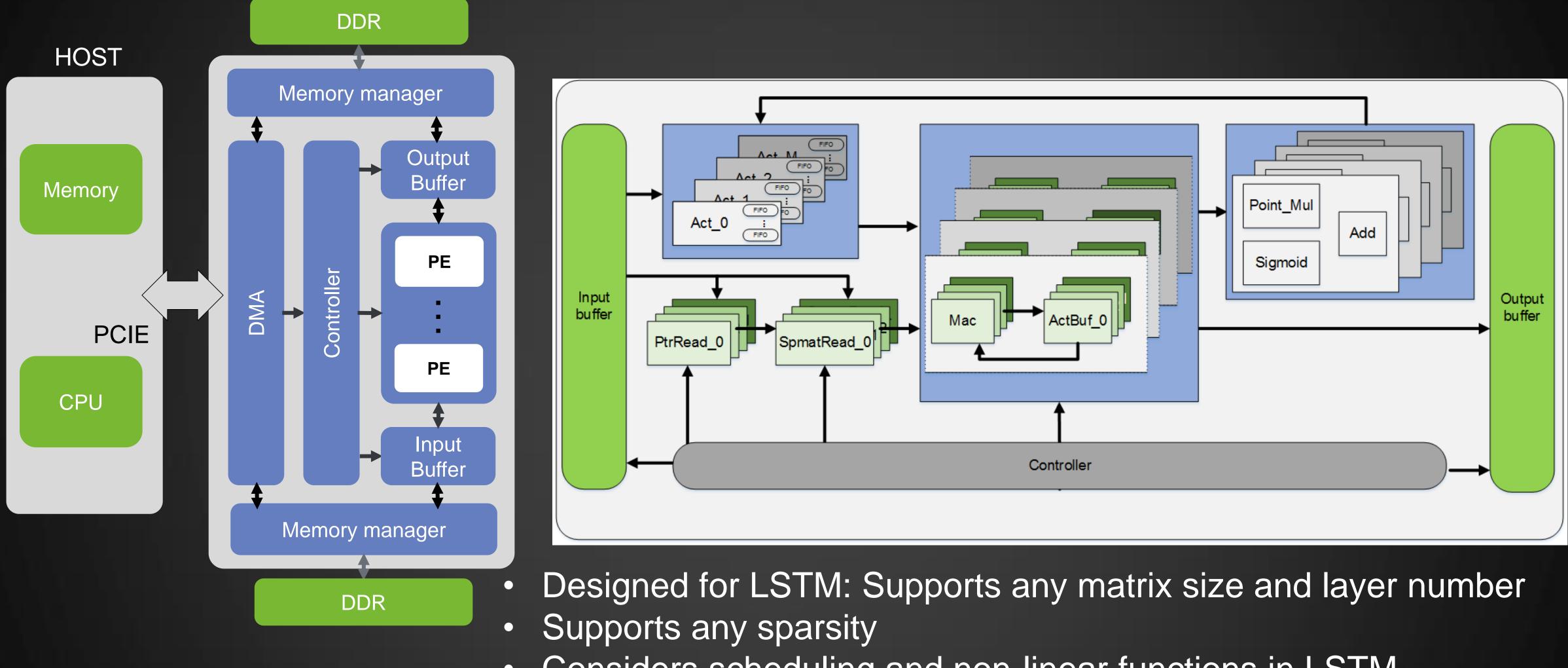
• 4.75 MB BRAM 2760 DSP 250-300MHz

Xilinx KU115

- 9.49MB BRAM •
- 5520 DSP ullet
- 250-300MHz ullet

FPGA has significantly more computing units but strictly limited on-chip memory

Descartes: Architecture for Sparse LSTM Acceleration FPGA

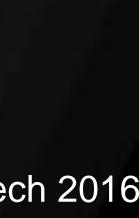


- ightarrow

Page 19

Considers scheduling and non-linear functions in LSTM • Scalable design (16/32/64 PEs for each thread)

Two modes: Batch (high throughput) / No Batch (low latency)



Evaluation: Platform and Benchmark for CNN

Platform Comparison ullet

Nvidia Tegra K1 SoC

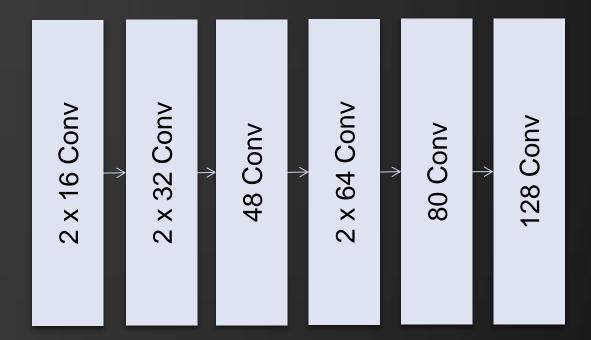
- 28 nm
- **ARM Cortex-A15 CPU**
- Kepler GPU 192 Cores
- Caffe with CuDNN

Benchmark igodol

Page 20

- Xilinx Zynq 7000 Series
- 28nm
- 85k/125k/350k logic cells ullet
- 220/400/900 DSP \bullet
- 4.9/9.3/19.1Mb BRAM ullet

(7020/30/45)(7020/30/45)(7020/30/45)



Customized Network Face alignment 104.6 Mop, 9 Conv layers

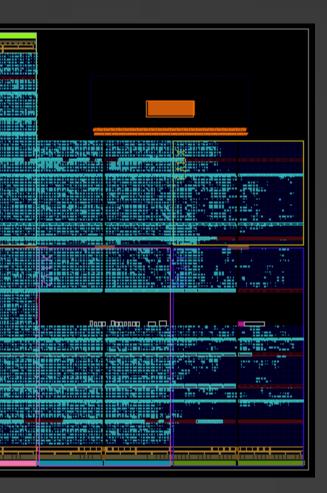
Evaluation: Resource Utilization with Aristotle Architecture

	LUT	FF	BRAM	DSP		LUT	FF	BRAM	DSP		LUT	FF	BRAM	DS
Total	53200	106400	140	220	Tot	al 78600	157200	265	400	Total	218600	437200	545	90
Used	27761	26600	75	220	Use	ed 43118	34097	203	400	Used	139385	85172	390.5	90
Ratio	52%	22%	54%	100%	Rat	io 55%	22%	77%	100%	Ratio	64%	19%	72%	100

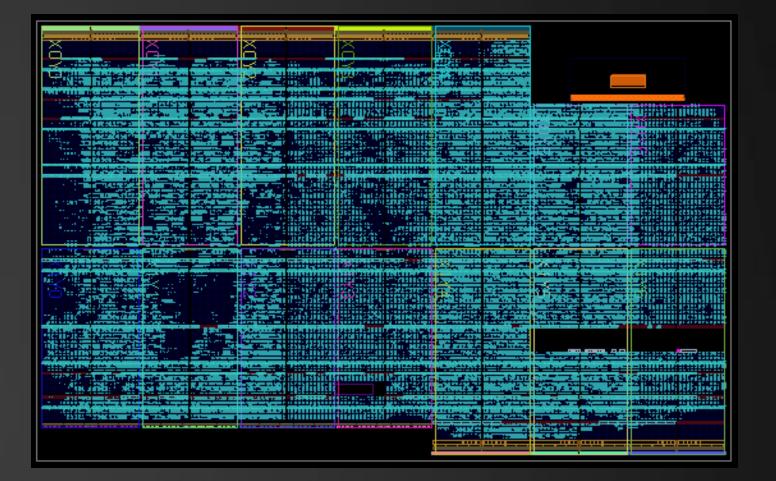
2 Processing elements Peak performance: 86.4GOPS@150MHz 4 Processing elements Peak performance: 172.8GOPS@150MHz

• Tegra K1 GPU - Peak performance : 326 GFOPS

Zynq 7030

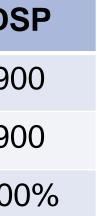


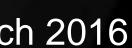
Zynq 7045 •



12 Processing elements

Peak performance: 518.4GOPS@150MHz





Evaluation: Performance of Aristotle Architecture

Runtime and performance^{*1} on TK1 and Zynq 7020

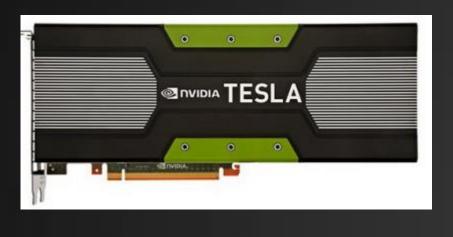
- Zyng 7020 consumes 20% 30% power of TK1 and costs less of TK1
- 1.78x higher performance on Zynq 7030 compared with Zynq 7020
- 4.94x higher performance on Zyng 7045 compared with Zyng 7020

Page 22

Aristotle architecture performs better when network is small but has limited peak performance

Evaluation: Platform and Benchmark for LSTM

Platform Comparison ightarrow

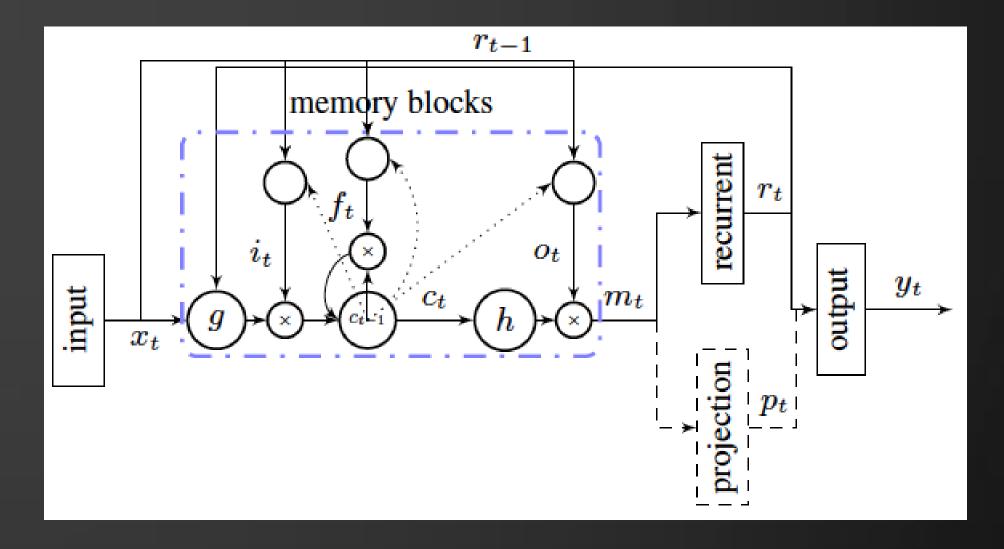


Nvidia K40 GPU

- 28nm \bullet
- 2880 CUDA Cores
- 810MHz / 875MHz ullet
- 12GB GDDR5 \bullet
- Benchmark: Real-world LSTM for Speech Recognition ullet
 - Max matrix size: 4096*1536
 - Consider scheduling of multiple matrixes
 - Consider non-linear functions
 - 100 frames per second

Kintex Ultrascale Series

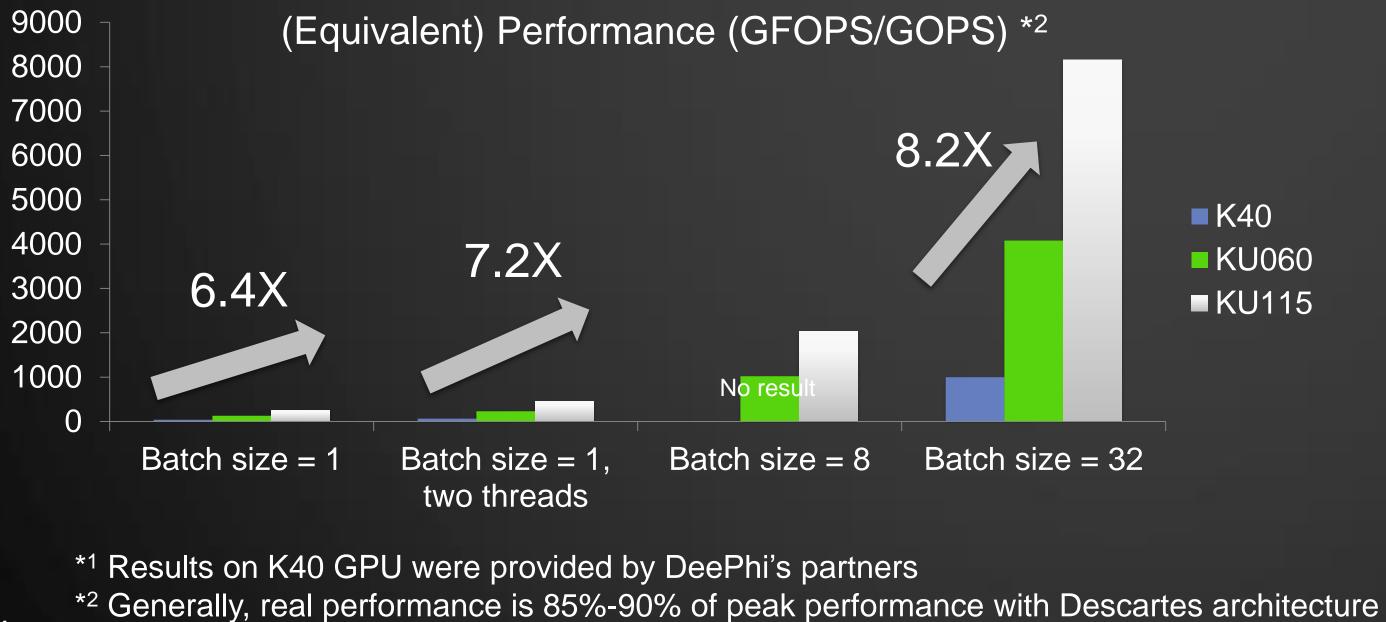
- 20nm •
- 4.75/9.49MB BRAM (KU060/115) ullet
- 2760/5520 DSP (KU060/115) ullet
- 300MHz \bullet



Evaluation: Performance and Resource Utilization of Descartes Architecture

Performance Comparison ullet

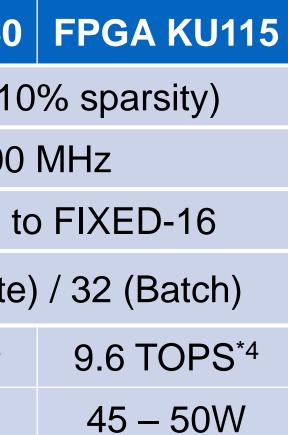
Platform	GPU K40*1	FPGA KU060
Dense or Sparse	Dense	Sparse (1
Frequency	810/875 MHz	300
Precision	FP32	FIXED-4
Threads to be Supported	Not limited	2 (Separate
Peak Performance	4.29 TFOPS	4.8 TOPS*3
Real Power	235W	30 – 35W



Page 24

*4 960 GOPS for dense LSTM *³ 480GOPS for dense LSTM

Resource Utilization ullet



KU060

	LUT	FF	BRAM	DSP
Total	331680	663360	1080	2760
Used	298875	446655	1011	1505
Ratio	90%	67%	94%	55%

KU115

	LUT	FF	BRAM	DSP
Total	663360	1326720	2160	5520
Used	563403	848990	1155	2529
Ratio	85%	64%	54%	46%

K40

KU060

■ KU115

DeePhi: Making deployment of deep learning algorithms simple and efficient

Automatic compilation tool

- Deep compression
- Activation quantization •
- Compiler •
- Aristotle: Architecture for CNN acceleration
- Descartes: Architecture for sparse LSTM acceleration ____

Evaluation boards will be shipped in Oct 2016 Apply for test at partner@deephi.tech

New architecture for CNN revealed in Q4 2016

Conclusion

Page 26

Live demo at Poster Session

Song Yao Founder & CEO songyao@deephi.tech

Thank You!

About us

- www.deephi.com
- Collaborate with us
- partner@deephi.tech

Join us

- dream@deephi.tech

