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About DeePhi Tech 
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DeePhi Tech 
• Discovering the philosophy behind deep learning computing 
• Founded by Song Yao, Yu Wang, and Song Han in March 2016 

• FPGA-based solution provider for deep learning 

 Automatic compilation tool chain + mini board/IP 

 Architecture for CNN and RNN-LSTM 

 Supporting detection, tracking, object/speech recognition, translation, and etc. 
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Overview 

• New Platform Expected for Deep Learning 

• Trend in Neural Network Design 

• Platform Selection 

• Overall Flow 

• Model Compression: Useful in Real-World Networks 

• Activation Quantization: 8 Bits Are Enough 

• Aristotle: Architecture for CNN Acceleration 

• Descartes: Architecture for Sparse LSTM Acceleration 

• Conclusion 
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Video Surveilliance Drone 

New Platform Expected for Deep Learning 

Client Cloud Edge 
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Low-power high-performance platform for deep learning is urgently needed  

Speech 

Recognition 

Requirements 

Real-time object recognition 
 

Limitation 

Battery capacity 
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Requirements 

Real-time video analysis 
 

Limitation 

High maintenance cost 

Requirements 

Low latency 
 

Limitation 

High maintenance/cooling cost 



Trend in Neural Network Design 

• CNN for Object Recognition • RNN-LSTM for Speech Recognition 
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Frameworks for different applications have not been unified 
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Source: Ross Girshick, “Fast R-CNN” 

Source: Ross Girshick et al., “R-CNN” 

Source: Hasim Sak et al.,” Long Short-Term 

Memory Based Recurrent Neural Network 

Architectures for Large Vocabulary Speech 

Recognition” 



Trend in Neural Network Design 
• CNN: Smaller and Slimmer 

AlexNet                   GoogLeNet                           VGG16                  ResNet                     SqueezeNet 

• Smaller: One convolution kernel has fewer computations 

• Slimmer: fewer channels, fewer computations, less parallelism 
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Copyright @ DeePhi Tech 2016 

84.7%                    90.6%                                 90%                     96.4%                          84.7% 

A CNN accelerator should perform better with small Conv kernels and low parallelism 
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Trend in Neural Network Design 
• RNN-LSTM: Larger and Deeper 
 Max dimension: 128  256  512  1024  2048 -> 4096 

 Number of LSTM layers: 1  3  5 

• Larger model size, higher bandwidth requirement 

• An RNN-LSTM accelerator should overcome the bandwidth problem 
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Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ Source: Lei Jia et al., Baidu 

LSTMP Model 

Projection matrix Wrm can 

compress recurrent 

matrixes, reduce the 

model size, and accelerate 

training 



Platform Selection 

FPGA is good for inference applications 

• CPU: Not enough energy efficiency 

• GPU: Extremely efficient in training, not enough efficiency in inference (batch size = 1) 

• DSP: Not enough performance with high cache miss rate 

• ASIC has high NRE: No clear huge market yet 

• ASIC has long time-to-market but neural networks are in evolution  

• FPGA 

 Acceptable power and performance 

 Supports customized architecture 

 High on-chip memory bandwidth 

 Relatively short time to market 

 High reliability 
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FPGA-based deep learning accelerators meet most products’ requirements 

Page 8 



Platform Selection 
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Software-Hardware Co-Design is Necessary 

• Great redundancy in neural networks 

 VGG16 network can be compressed from 550MB to 11.3MB 

 FPGA has limited BRAM and DDR bandwidth 

• Different neural network has different computation pattern 

 CNN: Frequent data reuse, dense 

 DNN/RNN/LSTM: No data reuse, sparse 

 Different architectures must adapt to different neural network 

• Neural networks are in evolution 

 Architecture must adapts to new algorithms 

 

FPGA 

DDR 

DDR 

Limitations of FPGA platform 
• Limited BRAM size 

• Limited DDR Bandwidth 
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Overall Flow 

Deep Compression 

Data Quantization 

Compilation 
FPGA-based Neural 

Network Accelerator 

Host CPU 
External 

Memory 

KALDI 
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Network 
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Fixed-Point 

Neural 

Network 

Model 

Algorithm 

Development 

Automatic 

Compilation 
Efficient Hardware 

Acceleration 

Algorithm engineers can simply run the compiler tool to implement FPGA acceleration 

Page 10 



Overall Flow 

Traditional FPGA-based Acceleration Faced Two Major Problem 

• Long development period 

 Hand coded: 2 – 3 months 

 OpenCL and HLS: 1 month 

• Insufficient performance and energy efficiency 
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DeePhi’s workflow solves the two problems in FPGA acceleration 

• Compiler + Architecture instead of OpenCL 

 Algorithm designer need to know nothing about hardware 

 Generates instructions instead of RTL code 

 Compilation in 1 minute 

• Much higher performance and energy efficiency 

 Hand-coded IP core and efficient architecture design 
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Model Compression: Useful in Real-World Netoworks 

Source: Song Han et al., Stanford University 

• Deep Compression: Useful for RNN-LSTM and FC layers in CNN 
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Deep Compression is useful in real-world neural networks and can save a great 

deal of computations and bandwidth demands 

Different gate in LSTM has different sensitivity 

With re-training, we can achieve: 

• < 10% sparsity for real-world FC layers in CNN 

• ~ 15% sparsity for real-world LSTMs 

• 4 bit weight quantization with no accuracy loss 
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Fully dense Fully sparse 

(WER - Word Error Rate) 



Activation Quantization: 8 Bits Are Enough 
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FP32 FIXED-16 FIXED-8 

ORIGINAL RAW RE-TRAIN RAW RE-TRAIN 

VGG16 
Top-1 65.77% 65.78% 67.84% 65.58% 67.72% 

Top-5 86.64% 86.65% 88.19% 86.38% 88.06% 

GoogLeNet 
Top-1 68.60% 68.70% 68.70% 62.75% 62.75% 

Top-5 88.65% 88.45% 88.45% 85.70% 85.70% 

SqueezeNet 
Top-1 58.69% 58.69% 58.69% 57.27% 57.27% 

Top-5 81.37% 81.35% 81.36% 80.32% 80.35% 

• Image classification on ILSVRC 2012 

• Object detection on PASCAL VOC 2007 
  R-FCN: < 2% mAP loss without re-training using 8-bit quantization 

  YOLO: < 1% mAP loss without re-training using 8-bit quantization 



Activation Quantization: 8 Bits Are Enough 

• Image classification: Results comparison 

GoogLeNet SqueezeNet VGG16 

FP32 FIXED-8 FP32 FIXED-8 FP32 FIXED-8 

Shetland 
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Shetland 

Sheepdog 

Shetland 

Sheepdog 

Shetland 

Sheepdog 

Shetland 

Sheepdog 

Shetland 

Sheepdog 

Collie Collie Collie Collie Collie Collie 

Borzoi Borzoi Border collie Papillon Borzoi Borzoi 

Afghan hound Pomeranian 
Afghan 

hound 
Border collie Afghan hound Papillon 

Pomeranian Afghan hound Papillon Pomeranian Papillon 
Australian 

terrier 

• Object detection: Results comparison 
 SqueezeNet + R-FCN 

FP32 FIXED-8 

• Most differences are in low-priority guesses • Similar proposal results with lower confidence 
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0.983 0.780 



• Based on Zynq 7000 Series FPGA 

• Optimized for 3x3 Conv kernels 

• Supports different Conv stride sizes 

• Scalable design (1PE, 2PE, 4PE, 12PE) on Zynq 7010/7020/7030/7045 

• Supports mainstream deep learning object framework: R-FCN, YOLO, and etc 

Aristotle: Architecture for CNN Acceleration 
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Aristotle: Processing Element  Architecture 

• Integrate convolvers, adder tree, non-linearity, and pooling units into one PE 

• Fully pipeline without intermediate data load/store 

• Supports dynamic-precision quantization 
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From Model to Instructions 
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• EIE (Efficient Inference Engine): Extremely efficient, but not for FPGA 
 Designed by Song Han et al. from Stanford University and published on ISCA 2016 

 102 GOPS@600 mW, 800MHz 

 

EIE chip (64PE) 
• 10.13 MB SRAM 

• 64 Multiplier 

• 800MHz 

Xilinx KU115 
• 9.49MB BRAM 

• 5520 DSP 

• 250-300MHz 

• FPGA has significantly more computing units but strictly limited on-chip memory 

• LSTM cannot utilize activation sparsity 

Xilinx KU060 
• 4.75 MB BRAM 

• 2760 DSP 

• 250-300MHz 
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Descartes: Architecture for Sparse LSTM Acceleration 



Descartes: Architecture for Sparse LSTM Acceleration 

• Designed for LSTM: Supports any matrix size and layer number 

• Supports any sparsity 

• Considers scheduling and non-linear functions in LSTM 

• Scalable design (16/32/64 PEs for each thread) 

• Two modes: Batch (high throughput) / No Batch (low latency) 
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Evaluation: Platform and Benchmark for CNN 

• Nvidia Tegra K1 SoC 
• 28 nm 

• ARM Cortex-A15 CPU 

• Kepler GPU 192 Cores 

• Caffe with CuDNN 

• Xilinx Zynq 7000 Series 
•   28nm   

•   85k/125k/350k logic cells (7020/30/45) 

•   220/400/900 DSP    (7020/30/45) 

•   4.9/9.3/19.1Mb BRAM      (7020/30/45) 
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• Platform Comparison 

• Benchmark 

VGG16 

Image classification 

Customized Network 

Face alignment 
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30.68 Gop 13 Conv layers 104.6 Mop, 9 Conv layers 

YOLO Tiny 

General object detection 

5.54 Gop, 9 Conv layers 
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Evaluation: Resource Utilization with Aristotle Architecture 
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• Zynq 7020 • Zynq 7030 • Zynq 7045 

LUT FF BRAM DSP 

Total 218600 437200 545 900 

Used 139385 85172 390.5 900 

Ratio 64% 19% 72% 100% 

LUT FF BRAM DSP 

Total 78600 157200 265 400 

Used 43118 34097 203 400 

Ratio 55% 22% 77% 100% 

LUT FF BRAM DSP 

Total 53200 106400 140 220 

Used 27761 26600 75 220 

Ratio 52% 22% 54% 100% 

2 Processing elements 

Peak performance: 86.4GOPS@150MHz 

4 Processing elements 

Peak performance: 172.8GOPS@150MHz 

12 Processing elements 

Peak performance: 518.4GOPS@150MHz 
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• Tegra K1 GPU - Peak performance : 326 GFOPS 



Evaluation: Performance of Aristotle Architecture 
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• Runtime and performance*1 on TK1 and Zynq 7020 

• Aristotle architecture performs better when network is small but has limited peak performance 

• Zynq 7020 consumes 20% - 30% power of TK1 and costs less of TK1 
 

• 1.78x higher performance on Zynq 7030 compared with Zynq 7020 

• 4.94x higher performance on Zynq 7045 compared with Zynq 7020 
 



Evaluation: Platform and Benchmark for LSTM 

• Max matrix size: 4096*1536 

• Consider scheduling of multiple matrixes 

• Consider non-linear functions 

• 100 frames per second 
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Kintex Ultrascale Series 
• 20nm 

• 4.75/9.49MB BRAM (KU060/115) 

• 2760/5520 DSP (KU060/115) 

• 300MHz 

Nvidia K40 GPU 
• 28nm 

• 2880 CUDA Cores 

• 810MHz / 875MHz 

• 12GB GDDR5 

• Platform Comparison 

• Benchmark: Real-world LSTM for Speech Recognition 
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Evaluation: Performance and Resource Utilization of Descartes Architecture 

Platform GPU K40*1 FPGA KU060 FPGA KU115 

Dense or Sparse Dense Sparse (10% sparsity) 

Frequency 810/875 MHz 300 MHz 

Precision FP32 FIXED-4 to FIXED-16 

Threads to be Supported Not limited 2 (Separate) / 32 (Batch) 

Peak Performance 4.29 TFOPS 4.8 TOPS*3 9.6 TOPS*4 

Real Power 235W 30 – 35W 45 – 50W 

• Performance Comparison 
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*1 Results on K40 GPU were provided by DeePhi’s partners 

*2 Generally, real performance is 85%-90% of peak performance with Descartes architecture 

*3 480GOPS for dense LSTM       *4 960 GOPS for dense LSTM 
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(Equivalent) Performance (GFOPS/GOPS) *2 

K40

KU060

KU115

• Resource Utilization 

• KU060 

LUT FF BRAM DSP 

Total 331680 663360 1080 2760 

Used 298875 446655 1011 1505 

Ratio 90% 67% 94% 55% 

• KU115 

LUT FF BRAM DSP 

Total 663360 1326720 2160 5520 

Used 563403 848990 1155 2529 

Ratio 85% 64% 54% 46% 

6.4X 
7.2X 

No result 

8.2X 



Conclusion 
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• DeePhi: Making deployment of deep learning algorithms simple and efficient 

 Automatic compilation tool 

• Deep compression 

• Activation quantization 

• Compiler 

 Aristotle: Architecture for CNN acceleration 

 Descartes: Architecture for sparse LSTM acceleration 
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Evaluation boards will be shipped in Oct 2016 

Apply for test at partner@deephi.tech 

 

New architecture for CNN revealed in Q4 2016  



Demo 
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Live demo at Poster Session 



Thank You! 
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About us 

 www.deephi.com 
 

Collaborate with us 

 partner@deephi.tech 
 

Join us 

 dream@deephi.tech 

Song Yao 

Founder & CEO 
 

songyao@deephi.tech 


