(intel) Design and development of a an Ultra-Low Power Intel Architecture MCU Class SoCs HotChips 2016

Peter Barry, contributions from Venkat Madduri & Raj Kothandaraman.

- Back to the future...
- Microcontroller Characteristics
- Intel® Quark[™] Microcontroller D2000
- X86 tradeoffs for microcontrollers
- SoC level microcontroller tradeoffs.

1991...

\$7,699 LEASE: AS LOW AS \$190/MONTH.

STANDARD CONFIGURATION Microprocessor and Main Board: Intel 80486 running at 33 MHz. Supports Weitek 4167 math coprocessor. Memory: 4MB standard. Storage: 1.2MB AND 1.44MB diskette drives, 200MB IDE hard drive, EISA caching SCSI controller available. Video: VGA monochrome display.

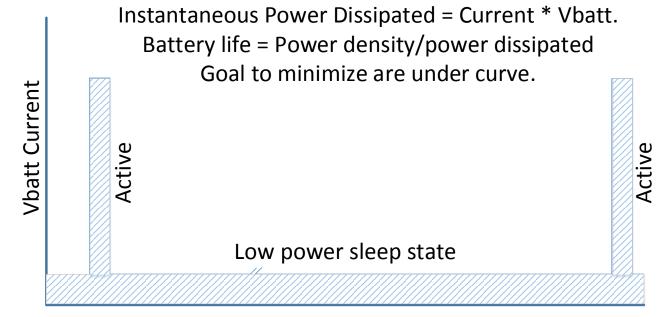
Yesteryears desk top is todays microcontroller.

33Mhz 486/Pentium Era – early '90

Internet of Things Group

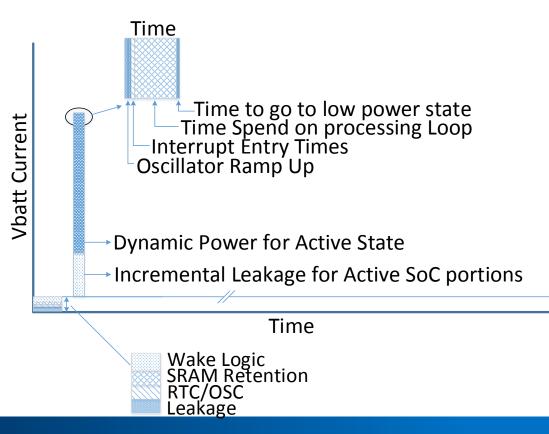
https://books.google.com/books?id=0FAEAAAAMBAJ&printsec=frontcover#y=onepage&g&f=false

- Back to the future...
- Microcontroller Characteristics
- Intel® Quark[™] Microcontroller D2000
- x86 ISA tradeoffs for microcontrollers
- SoC level microcontroller tradeoffs.


Microcontroller Characteristics

- Design targets for long life from battery
- Typically integrated Flash and SRAM.
- Mixed signal, DACs/ADCs/Comparators/Radios
- Duty Cycled use cases
 - -ratio between low power and active states are critical.

Application managed power state transitions.


Duty Cycling – active to sleep ratios

Expanded Power analysis

Product architecture driven by process

- Back to the future...
- Microcontroller Characteristics
- Intel® Quark[™] Microcontroller D2000
- x86 tradeoffs for microcontrollers
- SoC level microcontroller tradeoffs.

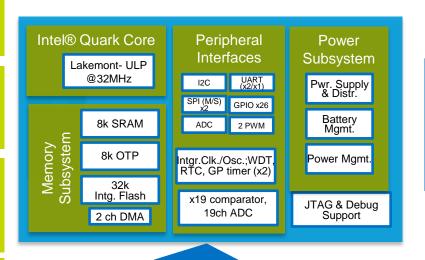
Entry Edge Controller: D2000

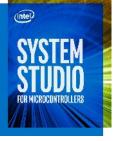
Battery-operated

- <35mW active, <10uW idle*
- Months/years activity dependent on use case

Intel® Architecture Microcontroller

- Extensible End Point
- 40pin QFN


Scalable SW applications & Tools


Intel® System Studio for Microcontrollers

- Free development tools, (GCC* Compiler, JTAG Debugger, flashing, optimized C and DSP libraries)
- Scalable Intel® Quark™ Microcontroller Interface API

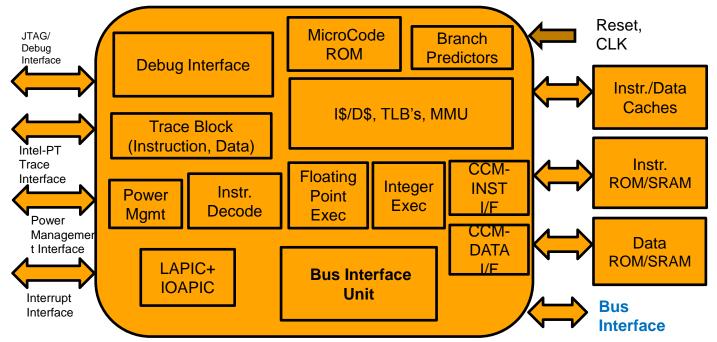
Hardened

- -40 to 85°C ambient, 10 year reliability
- Long life availability

*Other names and brands may be claimed as the property of others.

27

- Back to the future...
- Microcontroller Characteristics
- Intel® Quark[™] Microcontroller D2000
- x86 tradeoffs for microcontrollers
- SoC level microcontroller tradeoffs.


10

Tradeoffs

- Intel x86 ISA Compatibility
 - Instruction set has evolved over 30years, what is the correct point.
- System level capability
 - -Tradeoff of existing software
- Performance, area and power

Configurable High Level Quark x86 CPU Block Diagram

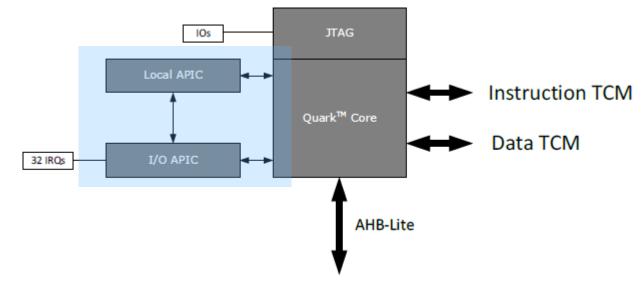
- Quark is an in-order 5 stage IA32 CPU with Pentium ISA.
- Configurable SoftIP targeting area, power, performance and features for different applications.

Quark D2000 Core Configuration Options

Domain	Parameter Description	Domain	Parameter Description	
	Pentium ISA baseline.		Enable Tightly/Closely	
	PAEXD feature – disabled		Coupled Memories(CCM)	
	SMEP feature – disabled	Micro	Instruction CCM Support	
Arch	Local APIC – nested	Architecture	Data CCM – 8K TLB Entries – 2/2	
	vectored controller			
	IOAPIC – Vectored		Data Cache Disabled	
	interrupt controller.		Single/Dual Ported	
	No FPU	Implementation	Memories	
Bus				
Interface	AHB-Lite Fabric Interface			
Target ma	xFrequency : 32Mhz			

Application Instruction Set

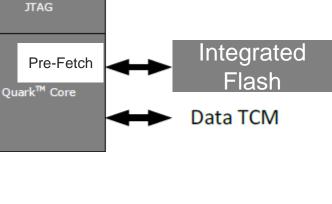
- Retain instruction set compatibility for compiler/debugger/tool chain reuse.
- Binary compatibility lesser consideration.
- For the simplest MCU's we chose Pentium ISA baseline.
- Drive implementation of Core to meet area/power/performance targets.


System Level ISA

- Enumerate features using CPUID.
- Paging
 - -Retained in design for protection not translation
 - -Set TLBs to 2Instr/2Data.
- Segmentation

-Retained as provides memory protection.

Interrupt Routing - Latency reduction.



- Traditional vector assignment and priority
- MCU fixed vector assignment and priorities
- Integrated tightly into core, IDT cached

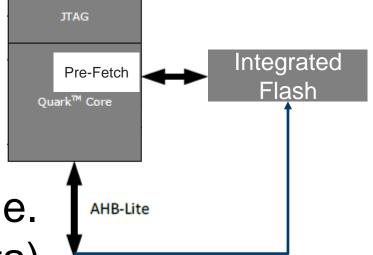
Instruction TCM Tradeoffs.

- Product Cost
- CoreMark Performance
- Core Prefetch Power performance tradeoff
- Flash Controller Sleep states
- Wait states vs core speed
- Race to halt power

Prefetcher	(PRF)	Sensitivity	v to	CoreMark	

+1024 iterations

Freq (MHz)	CoreMark Performance (CM/MHz)	Active Power (mW)	CM/MHz/mW	Perf Loss	Pwr Reduc	Energy (mJ) ⁺		
Prefetcher	ON							
32	1.53	26.4	0.058	N/A	N/A	552.7		
16	1.77	16.5	0.107	N/A	N/A	597.6		
8	1.77	8.3	0.213	N/A	N/A	601.2		
4	1.81	4.7	0.385	N/A	N/A	666.3		
Prefetcher OFF (relative to Prefetch on)								
32	1.14	23.4	0.049	25%	11%	658.4		
16	1.37	13.2	0.104	23%	20%	614.8		
8	1.37	6.9	0.199	23%	17%	642.7		
4	1.60	4.1	0.390	12%	13%	657.5		
	1.41							


Recommendation: Prefetcher ON Always – more energy efficient

1-wait-state

Von Neumann/Harvard – Data Fetches

- Lower latency direct paths
- to memory
- Self modifying code
 - ITCM Flash only, no cache.
- Literal Pools (immediate data)
 - X86 Variable length instructions
 - Data fetch to ITCM routed via AHB
 - C env startup relocate data to SRAM

Core Sleep States

- Tradeoff between sleep power and exit latency.
- Clock Stopping
 - -X86 Core/memory clock stop via Halt intr.
 - -Wake on interrupt
- Power state core always on (no C6 supported)

- Back to the future...
- Microcontroller Characteristics
- Intel® Quark[™] Microcontroller D2000
- x86 tradeoffs for microcontrollers
- SoC level microcontroller tradeoffs.

Power Management Efficiency.
Power deliver efficient/mode depends on supply current.

Config	Mode	Max Current	Efficiency
1.8v Normal	Switching	50mA	90% 50mA-10mA : 70% 10mA
1.8v Low Current	Linear	300µA	99%
1.35v Retention	Linear	300µA	99%

• 30% Efficiency delta – equates to 30% battery life, when dominated by idle power.

D2000 Deep Sleep Power

		HYB	RTC				Deep Sleep Current Actual
SoC Power State	VR	OSC	OSC	CPU	CMP	ADC	(μA)
	iLR-						
	1.8V	OFF	ON	HALT	OFF	OFF	3.4
Deep Sleep RTC	iLR-						
AONPT Wake	1.35V	OFF	ON	HALT	OFF	OFF	2.5
	iLR-						
	1.8V	OFF	OFF	HALT	1 ON	OFF	2.2
Deep Sleep NoRTC	iLR-						
Comparator Wake	1.35V	OFF	OFF	HALT	1 ON	OFF	1.6
	iLR-						
	1.8V	OFF	OFF	HALT	OFF	OFF	1.9
Deep Sleep NoRTC	iLR-						
GPIO Wake	1.35V	OFF	OFF	HALT	OFF	OFF	1.3
Notes:							

• Deep Sleep Current = PVDD Current + AVDD Current + IOVDD Current. Sum of all 3 inputs rails.

SoC Clocking

- Core Frequency Scaling (32/16/8/4Mhz)
 –Race to halt usually best, but running slower for longer better in some use cases.
 - –4Mhz Operation could fit in Low Power regulator modes max current.
 –Tradeoff of Power Islanding & Leakage.

Summary

- First iteration right ballpark in terms of performance/area/power/cost
- We Continue to
 - -Continue to iterate on the micro architecture
 - -Process related micro-architecture evolution
 - -Analog IP evolution

Q&A

26

Internet of Things Group

Disclaimer

Intel, the Intel logo, Quark are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

'Mileage May Vary' Disclaimer : Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit <u>www.intel.com/benchmarks</u>

Estimated Results Disclosure : Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance

LMT – ITCM/DTCM Pipeline Diagram

Micro- Operation	Prefetch	D1	D2	Execute	Write Back
Prefetch from ITCM	Prefetch Code from ITCM	Opcode Decode	Х	RF Read ALU Operation	Register Update
Load	Prefetch Code from ITCM	Opcode Decode	Linear Address Generation	TLB Lookup DTCM Read	Register Update
Store	Prefetch Code from ITCM	Opcode Decode	Linear Address Generation	TLB Lookup DTCM write	DTCM Write
Jump	Prefetch Code from ITCM	Opcode Decode	Х	Taken/Not Taken	
				Prefetch (PF) from Target Address for Tkn	D1

(intel