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•  Proliferation of malware – stealthier and increasing in number 
•  Software-level detection mechanisms have limited effectiveness 
 

Rethinking malware detection with 
hardware approach and low-level features 

Motivation 

Growing Malware Threats 

Limitations of Software Anti-Virus 

Catching Seen Malware [1] 

 

Programs (and malware) exhibit unique µArch signatures. 
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•  Used supervised machine learning (ML) techniques to train 
models to characterize dynamic behavior of 

•  503 Android malware apps  
•  210 Android benign apps from Google Play 

•  Evaluated classifiers with different variants in the same 
malware family  

•  Also explored feasibility with Linux rootkits and cache side-
channel attacks  

Methodology 
AMD

ANDROID

PANDABOARD

Old Malware

New Malware

Goodware

Side Channel

Rootkits

Goodware

X86
LINUX

Pe
rfo

rm
an

ce
 

Co
un

te
r S

am
pl

in
g

Performance 
Counter 

Database

Classifier 1

Classifier 2

Classifier N

Classifier N-1

Classifier 3

Classifier N-2

. . .

 

  
Detection Results 

Accuracy of Android malware classifiers  •  Android malware 

•  82.3% accuracy 
•  Linux rootkit 

•  60% accuracy 
•  Difficult problem; rootkits 

are tiny slices of execution 
•  Side-channel attack 

•  100% accuracy; No false 
positive 

 

Malware shellcode execution causes deviations in baseline 
µArch and arch characteristics of programs.   
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•  Used unsupervised ML technique (One-Class SVM with RBF 

kernel) to train baseline dynamic behavior models for 

•  Internet Explorer 8 
•  Adobe PDF Reader 9 

•  Evaluated detection models with Metasploit- generated 
exploit variants 

•  Target IE, Flash plugin, PDF plugin/standalone versions  
•  Multi-stage exploit process (ROP → Stage1 shellcode → 

Stage2 payload) 
•  Different feature extraction methods (temporal vs non-

temporal models) 

Methodology 

 

•  99.5% AUC score for AM-1 event set (STORE, LOAD, 
MISP_RET, CALL_ID) for detection of Stage1 shellcode 

•  1.5% slowdown with sampling granularity of 512k ins. 
•  100% true positive with 1.1% false positive rate 

Detection Results 

Catching Unseen Malware [2] 

Meteoric rise of Android malware (2011-2013) 

Source: Fortinet (2014) 

New malware on all platforms (2005-2013) 

Source: AV-Test (2014) 

Spyware 

Botnet Worms Trojans 
Adware 

and more … 

Source: (“Mudge”) CanSecWest 2013 

Li
ne

s 
of

 c
od

e 
(lo

g 
sc

al
e)

 

10mil 

100 
1985        1991         1997            2003     2009     2015 

Why we are losing the battle? •  Same level as software malware  

•  Prone to attacks/subversion 

•  Complex software implementation 
(many lines of code) 

•  High bug density 
 

•  Signatures typically use static 
characteristics of malware 

•  Static analysis can be 
defeated with trivial variants 
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