
A Silicon Anti-Virus Engine
Adrian Tang Dr. John Demme Prof. Simha Sethumadhavan Prof. Salvatore Stolfo

•  Proliferation of malware – stealthier and increasing in number
•  Software-level detection mechanisms have limited effectiveness

Rethinking malware detection with
hardware approach and low-level features

Motivation

Growing Malware Threats

Limitations of Software Anti-Virus

Catching Seen Malware [1]

Programs (and malware) exhibit unique µArch signatures.

bz
ip

2

L1 Exclusive Hits L2 Load Requests Arithmetic µOps Executed Branch Instructions Executed

bz
ip

2
bz

ip
2

m
cf

hm
m

er
sje

ng
lib

qu
an

tu
m

h2
64

om
ne

tp
p

as
ta

r
as

ta
r

Xa
la

nc

Insight
L1 Exclusive Hits L2 Load Requests

•  Used supervised machine learning (ML) techniques to train
models to characterize dynamic behavior of

•  503 Android malware apps
•  210 Android benign apps from Google Play

•  Evaluated classifiers with different variants in the same
malware family

•  Also explored feasibility with Linux rootkits and cache side-
channel attacks

Methodology
AMD

ANDROID

PANDABOARD

Old Malware

New Malware

Goodware

Side Channel

Rootkits

Goodware

X86
LINUX

Pe
rfo

rm
an

ce

Co
un

te
r S

am
pl

in
g

Performance
Counter

Database

Classifier 1

Classifier 2

Classifier N

Classifier N-1

Classifier 3

Classifier N-2

. . .

Detection Results

Accuracy of Android malware classifiers •  Android malware

•  82.3% accuracy
•  Linux rootkit

•  60% accuracy
•  Difficult problem; rootkits

are tiny slices of execution
•  Side-channel attack

•  100% accuracy; No false
positive

Malware shellcode execution causes deviations in baseline
µArch and arch characteristics of programs.

Insight

•  Used unsupervised ML technique (One-Class SVM with RBF

kernel) to train baseline dynamic behavior models for

•  Internet Explorer 8
•  Adobe PDF Reader 9

•  Evaluated detection models with Metasploit- generated
exploit variants

•  Target IE, Flash plugin, PDF plugin/standalone versions
•  Multi-stage exploit process (ROP → Stage1 shellcode →

Stage2 payload)
•  Different feature extraction methods (temporal vs non-

temporal models)

Methodology

•  99.5% AUC score for AM-1 event set (STORE, LOAD,
MISP_RET, CALL_ID) for detection of Stage1 shellcode

•  1.5% slowdown with sampling granularity of 512k ins.
•  100% true positive with 1.1% false positive rate

Detection Results

Catching Unseen Malware [2]

Meteoric rise of Android malware (2011-2013)

Source: Fortinet (2014)

New malware on all platforms (2005-2013)

Source: AV-Test (2014)

Spyware

Botnet Worms Trojans
Adware

and more …

Source: (“Mudge”) CanSecWest 2013

Li
ne

s
of

 c
od

e
(lo

g
sc

al
e)

10mil

100
1985 1991 1997 2003 2009 2015

Why we are losing the battle? •  Same level as software malware

•  Prone to attacks/subversion

•  Complex software implementation
(many lines of code)

•  High bug density

•  Signatures typically use static
characteristics of malware

•  Static analysis can be
defeated with trivial variants

[1] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethumadhavan, and Salvatore Stolfo. 2013. “On the feasibility of online malware detection with performance counters.”
 In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 559-570.

[2] Adrian Tang, Simha Sethumadhavan, and Salvatore J. Stolfo. "Unsupervised anomaly-based malware detection using hardware features."
 In Research in Attacks, Intrusions and Defenses, pp. 109-129. Springer International Publishing, 2014.

Hot Chips: A Symposium on High Performance Chips. August 23-25, 2015.

