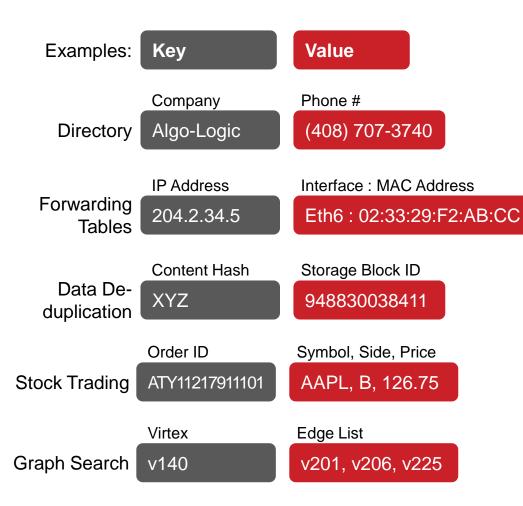
ALGORITHMS IN LOGIC


HTTP://ALGO-LOGIC.COM

Comparison of Key/Value Store (KVS) in Software and Programmable Hardware

John W. Lockwood, CEO: Algo-Logic Systems, Inc.

http://Algo-Logic.com • Solutions@Algo-Logic.com • (408) 707-3740 • 2255-D Martin Ave., Santa Clara, CA 95050

Why Share Data by Name (Key) Instead of Address?

Key/Value Store (KVS)

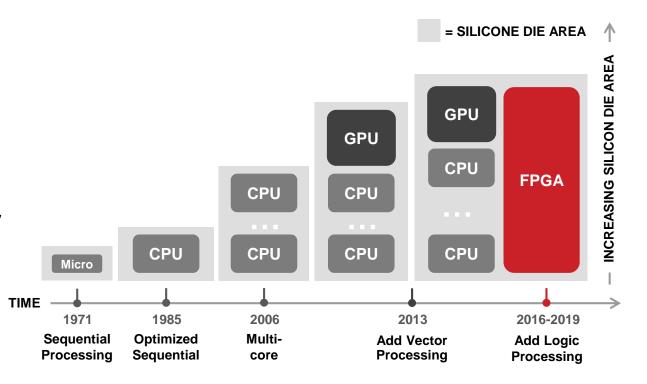
- Simplifies implementation of large-scale distributed computation algorithms
- Data Center Servers exchanges data over standard Ethernet

Challenges

- Operating System delays packets and limits throughput
- Per-core processing inefficient at high-speed packet processing

Solutions

- Bypass kernel bypass with DPDK
- Offload of packet processing with FPGA



Why the Move to Programmable Hardware?

"There are large challenges in scaling the performance of software now. The question is: 'What's next?' We took a bet on programmable hardware."

- Doug Burger, Microsoft
- Driving Metrics in the Data Center
 - Latency:
 - Reduce delay
 - Avoid jitter
 - Throughput
 - Processing packets at line rate
 - Handle 10G, 25G, 40G, and 100G
 - Power:
 - Driving cost of OpEx

- Field Programmable Gate Array (FPGA) logic moves into the CPU
- Microsoft accelerates BING search with FPGA
- Intel acquires Altera

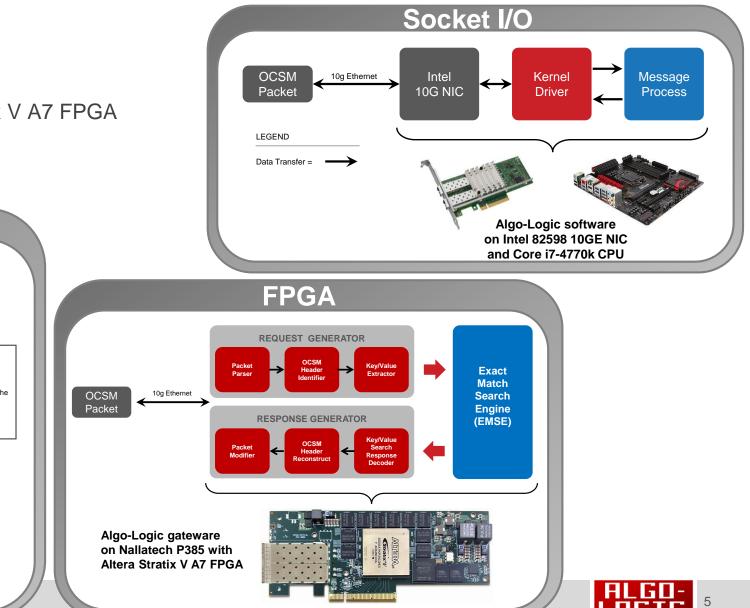
Servers Accelerated with FPGA Gateware

• FPGA Augments Existing Servers

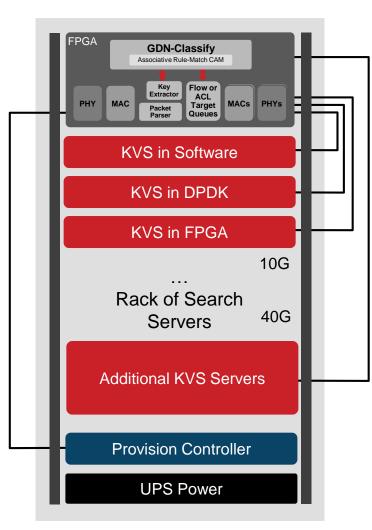
- Can run on an expansion card (same size as a GPU)
- Or may be integrated into the CPU socket

GDN Applications run on FPGA

- Implements low-latency, low-power, high-throughput data processing

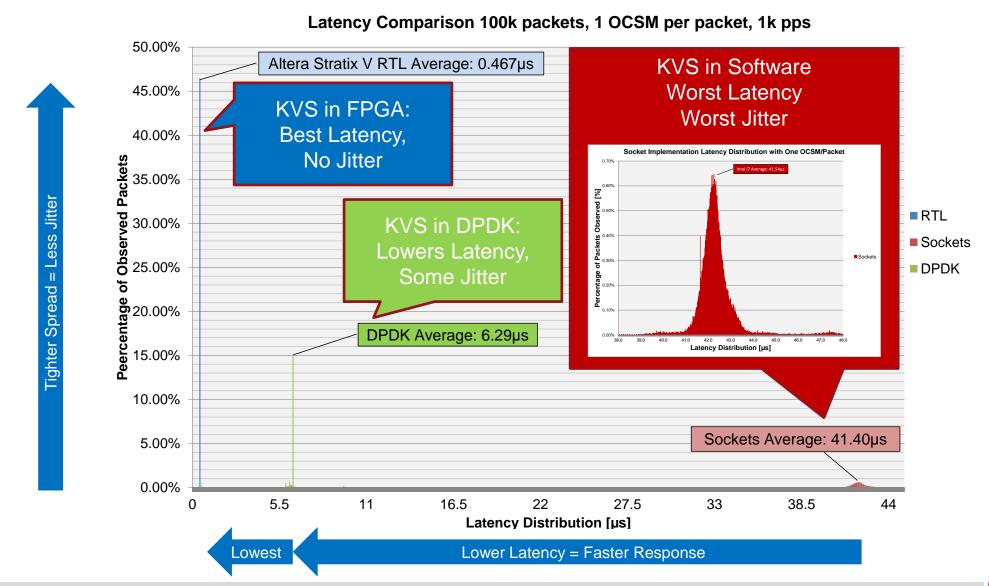


Implementation of KVS with Socket I/O, DPDK, and FPGA


Benchmark same application

- Key/Value Store (KVS)
- Running on the same PC
 - Intel i7-4770k CPU, 82598 NIC, and Altera Stratix V A7 FPGA
- With three different implementations

- Socket I/O, DPDK, FPGA **DPDK** Dequeue Receive Queue Enqueue Message Process Intel 82598 OCSM 10g Ethernet Message Note: Message read once into CPU Cache DPDK OCSM Buffer Packet Supported Packet NIC Response Generation LEGEND Dequeu Control Handof Enqueue Transmit Data Transfer Queue Algo-Logic software on Intel 82598 10GE NIC and Core i7-4770k CPU



Measured Latency, Throughput, and Power Results

All Datapaths Summary	Latency (µseconds)	Tested Throughput (CSMs/sec)	Power (µJoules/CSM)
Sockets	41.54	4.0	11
DPDK	6.434	16	6.6
RTL	0.467	15	0.52
All Datapaths Summary	Latency (µseconds)	Maximum Throughput (CSMs/sec)	Power (µJoules/CSM)
GDN vs. Sockets	88x less	13x	21x less
GDN vs. DPDK	14x less	3.2x	13x less

KVS Latency in FPGA, DPDK, and Sockets

Conclusions: Key/Value Store in Programmable Hardware

Lowers Latency

- -88x faster than Linux networking sockets
- —14x faster than optimized DPDK (kernel bypass)
- Increases Throughput (IOPs)
 - -3x to 13x improvement in throughput
 - -Lowers Capital Expenditures (CapEx)
- Reduces Power
 - -13x to 21x reduction in power
 - -Reduces Operating Expenditures (OpEx)

Gateware Defined Networking® dramatically reduces latency and power and improves throughput in the data center

