
1 ©2015 Rambus Cryptography Research Division 

Microarchitectures Undo 
Software Security Measures 

 

• To implement secure algorithms, software based cryptography 

utilizes the ISA through instructions or cryptographic extensions. 

• Security measures include masking to hide sensitive data. 

• Microarchitecture’s sophisticated efficiency logic can neutralize 

intended masking. 

• Due to unknown microarchitecture implementations, ensuring 

effective masking reduces to a game of trial and error, guess work 

and luck. 



2 ©2015 Rambus Cryptography Research Division 

Example of a Security Measure: 
Boolean Masking 
• Popular form of masking due to its 

efficiency. 

• Secret key and inputs are masked and 
split into shares. 

𝐾𝑖0 = 𝐾⊕𝑅2𝑖, 𝐾𝑖1 = 𝑅2𝑖 

𝐷𝑖0 = 𝐷𝑖 ⊕𝑅2𝑖+1, 𝐷𝑖1 = 𝑅2𝑖+1 

◦ 𝐾 is the secret key, 𝐷𝑖 is the 𝑖𝑡ℎ input, and 𝑅𝑖 
are uniformly distributed random numbers. 

◦ 𝐾𝑖0 and 𝐾𝑖1 are key shares. 

◦ 𝐷𝑖0 and 𝐷𝑖1 are input, or state shares. 

• Each share, alone, does not represent 
sensitive information. 

• The XOR, or Hamming Distance, of shares 
does represent sensitive information and 
must be avoided. 

MASKED AES 

IMPLEMENTATION 

Input Entropy 

Share 0 Share 1 
Key 

Share 0 

Share 1 Entropy 

Share 0 Share 1 

Output 



3 ©2015 Rambus Cryptography Research Division 

Examples of Microarchitecture Leaks 

Intel AES-NI 

• Cache reads reveal 
relationship between 

inputs and secret keys! 

• State transitions going 
into or output of AES 
reveal secret keys! 

ARM 

• Sequential operands through ALU leak Hamming distance. 

• Accessed value in register bank leaks Hamming distance with 

other values in register bank. 

• Sequential bus addresses leak Hamming distance. 

• Data used in LDRB instruction leak. 

• Combinations of seemingly unrelated data and instructions leak. 



4 ©2015 Rambus Cryptography Research Division 

Call for Collaboration 

• Side Channel Analysis is a real problem, even for large and 
complicated microprocessors. 
◦ Large and complicated microprocessors make it harder to implement 

software based countermeasures against DPA. 
• Especially when microarchitecture is not known. 

• Software based countermeasures for cryptographic ISA extensions can 
only reduce, not remove leaks. 

• Effective software based masking incurs large efficiency hits due to 
extra work to avoid implicit unmasking in microarchitecture. 

• Suggest possible additions, or modifications to microarchitecture to 
allow for a DPA based trusted execution environment. 

• Looking to the microarchitecture community for advice, suggestions 
and ideas. 


