

Raven: A 28nm RISC-V Vector Processor with Integrated Switched-Capacitor DC-DC Converters and Adaptive Clocking

Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Henry Cook, Rimas Avizienis, Brian Richards, Elad Alon, Borivoje Nikolic, Krste Asanovic

University of California, Berkeley

Motivation

- Energy efficiency constrains everything
 - SoCs are designed with an increasing number of voltage domains for better power management
 - Dynamic voltage and frequency scaling (DVFS) maximizes energy efficiency while
 Performance
 meeting performance
 constraints

Time

- Off-chip conversion
 - **K** Few voltage domains
 - **K** Costly off-chip components
 - Slow mode transitions

- On-chip conversion
 - Many domains
 - No off-chip components
 - Fast transitions

Credits: iFixit

Raven Project Goals

Build a microprocessor that is:

Talk Outline

- Motivation/Raven Project Goals
- On-Chip Switched-Capacitor DC-DC Converters
- Raven3 Chip Architecture
- Raven3 Implementation
- Raven3 Evaluation
- RISC-V Chip Building at UC Berkeley
- Summary

For more details on the Switched-Capacitor DC-DC Converters, please take a look at HC23 tutorial "Fully Integrated Switched-Capacitor DC-DC Conversion" by Elad Alon

SC DC-DC Converters Cont'd

- Partition capacitor and switches into many "unit cells" for better modularity
- Keeps the custom design modular
- Makes it easier to floorplan SC DC-DC converter

Traditional Approach: Interleaved Switching

Switch one unit cell at a time to smooth out voltage ripple

- Pros
 - Voltage ripple at the output is suppressed
 - Great for digital designs with fixed frequency clocks
- Cons
 - Each unit cell charge shares with other unit cells
 - Causes an efficiency loss beyond typical switching losses

Raven's Approach: Simultaneous Switching

 Switch all unit cells simultaneously when V_{out} reaches a lower bound V_{ref}

Pros

- Simplifies the design
- No charge sharing losses
- Better energy efficiency

Cons

- Need to deal with big ripple on voltage output
- Add an adaptive clock generator so that clock frequency tracks the voltage ripple

Self-Adjusting Clock Generator

- Replica tracks critical path with voltage ripple
- Controller quantizes clock edge

• Simple lower bound control V_{out} V_{ref} + FSM toggle $2GHz \ comparator$ V_{out} V_{ref} + $V_$

- RISC-V is a new, open, and completely free general-purpose instruction set architecture (ISA) developed at UC Berkeley starting in 2010
- RISC-V is simple and a clean-slate design
 - The base (enough to boot Linux and run modern software stack) has less than 50 instructions
- RISC-V is modular and has been designed to be flexible and extensible
 - Better integrate accelerators with host cores
- RISC-V software stack
 - GNU tools (GCC/Binutils/glibc/newlib/GDB), LLVM/Clang, Linux, Yocto (OpenJDK, Python, Scala)
- Checkout <u>http://riscv.org</u> for more details

- 64-bit 5-stage single-issue in-order pipeline
- Design minimizes impact of long clock-to-output delays of SRAMs
- 64-entry BTB, 256-entry BHT, 2-entry RAS
- MMU supports page-based virtual memory
- IEEE 754-2008-compliant FPU
- Supports SP, DP Fused-Multiply-Add (FMA) with HW support for subnormals

ARM Cortex-A5 vs. RISC-V Rocket

Category	ARM Cortex-A5	RISC-V Rocket
ISA	32-bit ARM v7	64-bit RISC-V v2
Architecture	Single-Issue In-Order	Single-Issue In-Order 5-stage
Performance	1.57 DMIPS/MHz	1.72 DMIPS/MHz
Process	TSMC 40GPLUS	TSMC 40GPLUS
Area w/o Caches	0.27 mm ²	0.14 mm ²
Area with 16K Caches	0.53 mm ²	0.39 mm ²
Area Efficiency	2.96 DMIPS/MHz/mm ²	4.41 DMIPS/MHz/mm ²
Frequency	>1GHz	>1GHz
Dynamic Power	<0.08 mW/MHz	0.034 mW/MHz

- PPA reporting conditions
 - 85% utilization, use Dhrystone for benchmark, frequency/power at TT 0.9V 25C, all regular Vt transistors
- 10% higher in DMIPS/MHz, 49% more area-efficient

1.3mm X 1.8mm Raven3 Chip Fabricated in ST 28nm FDSOI (Fully Depleted Silicon-on-Insulator) Chip area: 2.34 mm²

Single-Core RISC-V Processor with a Vector Accelerator Core area: 1.19mm²

Integrated Switched-Capacitor DC-DC Converter

Converter area: 0.19mm² Area overhead: 16%

Adaptive Clock Generator

122 pins total60 for signals62 for power/ground

971 MHz34 GFLOPS/W w/o Converter26 GFLOPS/W w/ Converter

Raven3 Test setup

- Daughterboard: Chip-on-board
- Motherboard: Programmable supplies
- Host: Zedboard (ZYNQ FPGA, network accessible)

Raven3 Voltage Measurements

- Traditional efficiency measurement is not appropriate for our design
 - 1. Difficult to measure on-chip current and voltage
 - 2. Cannot measure adaptive clock overhead

Raven3 Achieves >80% System Efficiency

 System efficiency = Ratio of energy required to finish same workload in same time with the converter versus without the converter

34 Double-Precision GFLOPS/W

- Double-precision matrix-multiplication running on vector unit used as energy-efficiency metric
 - 34 GFLOPS/W without DC-DC converter
 - 26 GFLOPS/W with DC-DC converter
 - Note, GFLOPS/W is inverse of nJ/FLOP

Five 28nm & Six 45nm RISC-V Chips Taped Out So Far

Agile Hardware Development Methodology

- "Tape-in": Designs that could be taped out
 - LVS clean & DRC sane
 - Pass RTL/gate-level simulation and timing
- Fully scripted ASIC flow
 - RTL change to chip <1d
 - Get early feedback
 - Automatic nightly regressions
 - Identify source of subtle bugs
- Check longer programs on FPGA

 Iterate quickly on RTL with using the C++ emulator (Checkout

chisel.eecs.berkeley.edu

for more details)

Summary

- 28nm Raven3 processor features:
 - Fine-grained, wide-range DVFS (20ns, 0.45-1V)
 - Entirely on-chip voltage conversion
 - High system efficiency (>80%)
 - Extreme energy efficiency (34/26 GFLOPS/W)
- Key enablers
 - RISC-V, a simple, yet powerful ISA (free and open!)
 - Agile development, build hardware like software
 - Chisel, lets designers do more things with less effort
- RISC-V core generators and software tools opensourced at <u>http://riscv.org</u>
- Energy-efficient, low-cost on-chip DC/DC converters are buildable!

Acknowledgements

- Funding: BWRC members, ASPIRE members, DARPA PERFECT Award Number HR0011-12-2-0016, Intel ARO, AMD, GRC, Marie Curie FP7, NSF GRFP, NVIDIA Fellowship
- Fabrication donation by STMicroelectronics
- Tom Burd, James Dunn, Olivier Thomas, and Andrei Vladimirescu

SUPPLEMENTAL SLIDES

ZYNQ FPGA

"Rocket Chip" SoC Generator

30

RISC

Chisel is a new HDL embedded in Scala

- Rely on good software engineering practices such as abstraction, reuse,
 - object oriented programming, functional programming
- Build hardware like software
- Chisel is not a high-level synthesis tool
 - It is a program that writes RTL

- (1, 2, 3) map { n => n+1 } Result: (2, 3, 4)
- (1, 2, 3) zip (a, b, c)
 Result: ((1, a), (2, b), (3, c))
- ((1, a), (2, b), (3, c)) map { case (left, right) => left }

Result: (1, 2, 3)

- (1, 2, 3) foreach { n => print(n) } Result: "123"
- for (x <- 1 to 3; y <- 1 to 3) yield (x, y) Result: ((1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3))

- TileLinkIO consists of Acquire, Probe, Release, Grant, Finish

UncachedTileLinkIO

- UncachedTileLinkIO consists of Acquire, Grant, Finish
- Convertors for TileLinklO/UncachedTileLinklO in uncore library

ROCCIO

 Rocket sends coprocessor instruction via the Cmd interface

- Accelerator responds through Resp interface
- Accelerator sends memory requests to L1D\$ via CachelO
- busy bit for fences
- IRQ, S, exception bit used for virtualization
- UncachedTileLinkIO for instruction cache on accelerator
- PTWIO for page-table walker ports on accelerator

Vector Bank Execution Diagram

 After a 2-cycle initial startup latency, the banked RF is effectively able to read out 2 operands/cycle.

What's Different about RISC-V?

- Simple
 - Far smaller than other commercial ISAs
- Clean-slate design
 - Clear separation between user and privileged ISA
 - Avoids µarchitecture or technology-dependent features
- A modular ISA
 - Small standard base ISA
 - Multiple standard extensions
- Designed for extensibility/specialization
 - Variable-length instruction encoding
 - Vast opcode space available for instruction-set extensions
- Stable
 - Base and standard extensions are frozen
 - Additions via optional extensions, not new versions

- RISC-V is smallest ISA for 32- and 64-bit addresses
 - Average 34% smaller for RV32C, 42% smaller for RV64C

RISC-V Documentation, Software Ecosystem

- Documentation
 - RISC-V User-Level ISA Specification V2
 - RISC-V Compressed ISA Specification V1.7
 - RISC-V Privileged-Level ISA Specification V1.7
- Modern Software Stack
 - GCC/Binutils/glibc/newlib/GDB
 - LLVM/Clang
 - Linux
 - Yocto (OpenJDK, Python, Scala, ...)
- RISC-V Software Implementation
 - ANGEL JS ISA Simulator
 - Spike ISA Simulator
 - QEMU
- Checkout <u>http://riscv.org</u> for more details

RISC-V Core Generators from UC Berkeley

Z-scale: Family of Tiny Cores

- Similar class: ARM Cortex M0/M0+/M3/M4
- Integrates with AHB-Lite interconnect
- Open-Sourced
- Rocket: Family of In-order Cores
 - Currently 64-bit single-issue only
 - Plans to work on dual-issue, 32-bit options
 - Similar class: ARM Cortex A5/A7/A53
 - Will integrate with AXI4 interconnect
 - Open-Sourced
- BOOM: Family of Out-of-Order Cores
 - Supports 64-bit single-, dual-, quad-issue
 - Similar class: ARM Cortex A9/A15/A57
 - Will integrate with AXI4 interconnect

CoreMark Scores

Checkout Chris Celio's "BOOM: Berkeley Out-of-Order Machine" talk from 2nd RISC-V Workshop for more details

- DVFS: Dynamic Voltage and Frequency Scaling
- SC: Switched Capacitor
- DLL: Delay-Locked Loop
- LDO: Low-Dropout Regulator
- FDSOI: Fully Depleted Silicon-on-Insulator
- FMA: Fused-Multiply-Add
- BTB: Branch Target Buffer
- BHT: Branch History Table
- RAS: Return Address Stack