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Motivation 

 Energy efficiency constrains everything 
- SoCs are designed with an increasing number of 

voltage domains for better power management 

- Dynamic voltage and 

frequency scaling (DVFS) 

maximizes energy 

efficiency while 

meeting performance 

constraints 
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• Off-chip conversion 

Few voltage domains 

Costly off-chip components 

Slow mode transitions 

 

✖ 
✖ 
✖ 

• On-chip conversion 

Many domains 

No off-chip components 

Fast transitions 

 

 

✔ 
✔ 
✔ 



3 

iPhone 6 

Front Side Back Side 

Credits: iFixit 

Voltage 

Regulators 

Primary Power 

Management IC 

Secondary Power 

Management IC 



Raven Project Goals 

Build a microprocessor that is: 
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• Fine-grained DVFS 

• High conversion efficiency 
Energy-
efficient 

• Entirely on-chip converter 

• Low area overhead 
Low-cost 



Talk Outline 

 Motivation/Raven Project Goals 

 On-Chip Switched-Capacitor DC-DC Converters 

 Raven3 Chip Architecture 

 Raven3 Implementation 

 Raven3 Evaluation 

 RISC-V Chip Building at UC Berkeley 

 Summary 

 
 

 

 

For more details on the Switched-Capacitor DC-DC Converters, please take a 

look at HC23 tutorial “Fully Integrated Switched-Capacitor DC-DC Conversion” 

by Elad Alon 
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Switched-Capacitor (SC) 
DC-DC Converters 
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SC DC-DC Converters Cont’d 
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 Partition capacitor 

and switches into 

many “unit cells” for 

better modularity 

 Keeps the custom 

design modular 

 Makes it easier to 

floorplan SC DC-DC 

converter 



Traditional Approach: 
Interleaved Switching 
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 Switch one unit cell at a time to smooth out 

voltage ripple 
 Pros 

- Voltage ripple at the output is 

suppressed 

- Great for digital designs with 

fixed frequency clocks 

 Cons 
- Each unit cell charge shares 

with other unit cells 

- Causes an efficiency loss 

beyond typical switching 

losses 



Raven’s Approach: 
Simultaneous Switching 

 Switch all unit cells simultaneously when Vout 

reaches a lower bound Vref 

 

 

 

 

 

 

 

 
 

 Add an adaptive clock generator so that clock 

frequency tracks the voltage ripple 
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 Pros 
- Simplifies the design 

- No charge sharing losses 

- Better energy efficiency 

 Cons 
- Need to deal with big ripple 

on voltage output 



Self-Adjusting Clock Generator 

 

 

 

 

 

 

 

 

 

 

 Replica tracks critical path with voltage ripple 

 Controller quantizes clock edge 
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Block Diagram (Tunable Replica Path)
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Reconfigurable SC Converters 
for DVFS 
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 Simple lower bound control 

1V Mode 1.8V 1/2 Mode 1V 2/3 Mode 1V 1/2 Mode
(~1V) (~0.9V) (~0.67V) (~0.5V)
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Raven3 Chip Architecture 
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 RISC-V is a new, open, and completely free 

general-purpose instruction set architecture (ISA) 

developed at UC Berkeley starting in 2010 

 RISC-V is simple and a clean-slate design 
- The base (enough to boot Linux and run modern 

software stack) has less than 50 instructions 

 RISC-V is modular and has been designed to be 

flexible and extensible 
- Better integrate accelerators with host cores 

 RISC-V software stack 
- GNU tools (GCC/Binutils/glibc/newlib/GDB), 

LLVM/Clang, Linux, Yocto (OpenJDK, Python, Scala) 

 Checkout http://riscv.org for more details 
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Rocket Scalar Core 
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PC IF ID EX MEM 

To Vector 

Accelerator 

 64-bit 5-stage single-issue in-order pipeline 

 Design minimizes impact of long clock-to-output delays of 

SRAMs 

 64-entry BTB, 256-entry BHT, 2-entry RAS 

 MMU supports page-based virtual memory 

 IEEE 754-2008-compliant FPU  

 Supports SP, DP Fused-Multiply-Add (FMA) with HW 

support for subnormals 
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ARM Cortex-A5 vs. RISC-V Rocket 

Category ARM Cortex-A5 RISC-V Rocket 

ISA 32-bit ARM v7 64-bit RISC-V v2 

Architecture Single-Issue In-Order Single-Issue In-Order 5-stage 

Performance 1.57 DMIPS/MHz 1.72 DMIPS/MHz 

Process TSMC 40GPLUS TSMC 40GPLUS 

Area w/o Caches 0.27 mm2 0.14 mm2 

Area with 16K Caches 0.53 mm2 0.39 mm2 

Area Efficiency 2.96 DMIPS/MHz/mm2 4.41 DMIPS/MHz/mm2 

Frequency >1GHz >1GHz 

Dynamic Power <0.08 mW/MHz 0.034 mW/MHz 

- PPA reporting conditions 
- 85% utilization, use Dhrystone for benchmark, frequency/power at TT 

0.9V 25C, all regular Vt transistors 

- 10% higher in DMIPS/MHz, 49% more area-efficient 
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Hwacha Vector Accelerator 
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1.3mm X 1.8mm Raven3 Chip  

Fabricated in ST 28nm FDSOI 

(Fully Depleted Silicon-on-Insulator) 

Chip area: 2.34 mm2 

Single-Core RISC-V Processor 
with a Vector Accelerator  

Core area: 1.19mm2 

Integrated Switched-Capacitor 
DC-DC Converter  

Converter area: 0.19mm2 

Area overhead: 16% 

Adaptive Clock Generator 

971 MHz 

34 GFLOPS/W w/o Converter 

26 GFLOPS/W w/ Converter 

122 pins total 

60 for signals 

62 for power/ground 



Raven3 Test setup 

Conf. 1 

Conf. 2 

Conf. 3 
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 Daughterboard: Chip-on-board 

 Motherboard: Programmable 

supplies 

 Host: Zedboard (ZYNQ FPGA, 

network accessible) 



Raven3 Voltage Measurements 
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Measuring Efficiency 
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 Traditional efficiency measurement is not 

appropriate for our design 
1. Difficult to measure on-chip current and voltage 

2. Cannot measure adaptive clock overhead 

 



Raven3 Achieves 
>80% System Efficiency 

 System efficiency = Ratio of energy required to 

finish same workload in same time with the 

converter versus without the converter 
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Raven3 Achieves 
34 Double-Precision GFLOPS/W 

 Double-precision matrix-multiplication running on 

vector unit used as energy-efficiency metric 
- 34 GFLOPS/W without DC-DC converter 

- 26 GFLOPS/W with DC-DC converter 

- Note, GFLOPS/W is inverse of nJ/FLOP 
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Five 28nm & Six 45nm 
RISC-V Chips Taped Out So Far 
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Raven-1 
Raven-2 

Raven-3 

Raven-3.5 

EOS14 

EOS16 
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EOS20 

EOS22 EOS24 

2011 2012 2013 2014 2015 

May Apr Aug Feb Jul Sep Mar Nov Mar 

Raven: ST 28nm FDSOI 

SWERVE: TSMC 28nm 

EOS: IBM 45nm SOI 

SWERVE 

Apr 



Agile Hardware Development 
Methodology  
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C++ 

FPGA 

ASIC Flow 

Tape-in 

Tape-out 

Big Chip 

Tape-out 

 “Tape-in”: Designs that 

could be taped out 
- LVS clean & DRC sane 

- Pass RTL/gate-level 

simulation and timing 

 Fully scripted ASIC flow 
- RTL change to chip <1d 

- Get early feedback 

- Automatic nightly 

regressions 

- Identify source of subtle 

bugs 

 Check longer programs on 

FPGA 

 Iterate quickly on RTL with                  

                            using the 

C++ emulator (Checkout 

chisel.eecs.berkeley.edu 

for more details) 
 

 



Summary 

 28nm Raven3 processor features: 
- Fine-grained, wide-range DVFS (20ns, 0.45-1V) 

- Entirely on-chip voltage conversion 

- High system efficiency (>80%) 

- Extreme energy efficiency (34/26 GFLOPS/W) 

 Key enablers 
- RISC-V, a simple, yet powerful ISA (free and open!) 

- Agile development, build hardware like software 

- Chisel, lets designers do more things with less effort 

 RISC-V core generators and software tools open-

sourced at http://riscv.org 

 Energy-efficient, low-cost on-chip DC/DC 

converters are buildable! 

25 

http://riscv.org


Acknowledgements 

 Funding: BWRC members, ASPIRE members, 

DARPA PERFECT Award Number HR0011-12-2-

0016, Intel ARO, AMD, GRC, Marie Curie FP7, 

NSF GRFP, NVIDIA Fellowship 

 Fabrication donation by STMicroelectronics  

 Tom Burd, James Dunn, Olivier Thomas, and 

Andrei Vladimirescu 

26 



27 

SUPPLEMENTAL 

SLIDES 



Test Chip Setup 
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FPGA Setup 
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“Rocket Chip” SoC Generator 
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Who should use the Rocket Chip 
Generator? 
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1. Change Parameters 
2. Develop New Accelerators 
3. Develop Own RISC-V Core 
4. Develop Own Device 



 Chisel is a new HDL embedded in Scala 
- Rely on good software engineering practices such as 

abstraction, reuse, 

object oriented 

programming, 

functional programming 

- Build hardware 

like software 

 Chisel is not a 

high-level 

synthesis tool 
- It is a program 

that writes RTL 

 

 

Chisel Program 
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Functional Programming 101 

 (1, 2, 3) map { n => n+1 } 
Result: (2, 3, 4) 

 (1, 2, 3) zip (a, b, c) 
Result: ((1, a), (2, b), (3, c)) 

 ((1, a), (2, b), (3, c)) map { case (left, right) => 

left } 
Result: (1, 2, 3) 

 (1, 2, 3) foreach { n => print(n) } 
Result: “123” 

 for (x <- 1 to 3; y <- 1 to 3) yield (x, y) 
Result: ((1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), 

(3,3)) 
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Functional Programming Example 
Used in AHB-Lite Crossbar 

class AHBXbar(nMasters: Int, nSlaves: Int) extends Module 
{ 
  val io = new Bundle { 
    val masters = Vec.fill(nMasters){new AHBMasterIO}.flip 
    val slaves = Vec.fill(nSlaves){new AHBSlaveIO}.flip 
  } 
 
  val buses = List.fill(nMasters){ Module(new AHBBus(nSlaves)) } 
  val muxes = List.fill(nSlaves){ Module(new AHBSlaveMux(nMasters)) } 
 
  (buses.map(b => b.io.master) zip io.masters) foreach { case (b, m) => b <> m } 
  (muxes.map(m => m.io.out)    zip io.slaves ) foreach { case (x, s) => x <> s } 
  for (m <- 0 until nMasters; s <- 0 until nSlaves) yield { 
    buses(m).io.slaves(s) <> muxes(s).io.ins(m) 
  } 
} 34 



TileLinkIO 
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- TileLinkIO consists of Acquire, Probe, Release, Grant, 
Finish 
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UncachedTileLinkIO 
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- UncachedTileLinkIO consists of Acquire, Grant, Finish 
- Convertors for TileLinkIO/UncachedTileLinkIO in uncore 

library 



ROCCIO 

 Rocket sends 

coprocessor instruction 

via the Cmd interface 

 Accelerator responds 

through Resp interface 

 Accelerator sends 

memory requests to 

L1D$ via CacheIO 

 busy bit for fences 

 IRQ, S, exception bit 

used for virtualization 

 UncachedTileLinkIO for 

instruction cache on 

accelerator 

 PTWIO for page-table 

walker ports on 

accelerator 
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Vector Bank Execution Diagram 
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 After a 2-cycle initial startup latency, the banked RF is 

effectively able to read out 2 operands/cycle. 



Our Physical Design Flow 
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RTL Code (Verilog) 

Synthesis 

Place-and-Route 

Gate-level Netlist 

Signed-Off Design 

Formality 

Formal Verification 

PrimeTime/StarRC 

Static Timing Analysis 

VCS Post-PNR 

Gate-level Simulation 

Hierarchical SYN & PNR 

UPF-based MV SYN & PNR 

Chisel Source Code 

Chisel 



What’s Different about RISC-V? 

 Simple 
- Far smaller than other commercial ISAs 

 Clean-slate design 
- Clear separation between user and privileged ISA 
- Avoids µarchitecture or technology-dependent 

features 

 A modular ISA 
- Small standard base ISA 
- Multiple standard extensions 

 Designed for extensibility/specialization 
- Variable-length instruction encoding 
- Vast opcode space available for instruction-set 

extensions 

 Stable 
- Base and standard extensions are frozen 
- Additions via optional extensions, not new versions 
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SPECint2006 Code Size 

 RISC-V is smallest ISA for 32- and 64-bit 
addresses 

- Average 34% smaller for RV32C, 42% smaller for 
RV64C 
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RISC-V Documentation, 
Software Ecosystem 

 Documentation 
- RISC-V User-Level ISA Specification V2 

- RISC-V Compressed ISA Specification V1.7 

- RISC-V Privileged-Level ISA Specification V1.7 

 Modern Software Stack 
- GCC/Binutils/glibc/newlib/GDB 

- LLVM/Clang 

- Linux 

- Yocto (OpenJDK, Python, Scala, …) 

 RISC-V Software Implementation 
- ANGEL JS ISA Simulator 

- Spike ISA Simulator 

- QEMU 

 Checkout http://riscv.org for more details 
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RISC-V Core Generators 
from UC Berkeley 

 Z-scale: Family of Tiny Cores 
- Similar class: ARM Cortex M0/M0+/M3/M4 

- Integrates with AHB-Lite interconnect 

- Open-Sourced 

 Rocket: Family of In-order Cores 
- Currently 64-bit single-issue only 

- Plans to work on dual-issue, 32-bit options 

- Similar class: ARM Cortex A5/A7/A53 

- Will integrate with AXI4 interconnect 

- Open-Sourced 

 BOOM: Family of Out-of-Order Cores 
- Supports 64-bit single-, dual-, quad-issue 

- Similar class: ARM Cortex A9/A15/A57 

- Will integrate with AXI4 interconnect 
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CoreMark Scores 
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Checkout Chris Celio’s “BOOM: Berkeley Out-of-Order 

Machine” talk from 2nd RISC-V Workshop for more details 



Glossary 

 DVFS: Dynamic Voltage and Frequency Scaling 

 SC: Switched Capacitor 

 DLL: Delay-Locked Loop 

 LDO: Low-Dropout Regulator 

 FDSOI: Fully Depleted Silicon-on-Insulator 

 FMA: Fused-Multiply-Add 

 BTB: Branch Target Buffer 

 BHT: Branch History Table 

 RAS: Return Address Stack 
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