

Knights Landing (KNL): 2nd Generation Intel® Xeon Phi™ Processor

Avinash Sodani KNL Chief Architect Senior Principal Engineer, Intel Corp.

Legal

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.

All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps.

Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.Intel.com/performance

Intel, Intel Inside, the Intel logo, Centrino, Intel Core, Intel Atom, Pentium, and Ultrabook are trademarks of Intel Corporation in the United States and other countries

Knights Landing: Next Intel® Xeon Phi™ Processor

Intel® Many-Core Processor targeted for HPC and Supercomputing

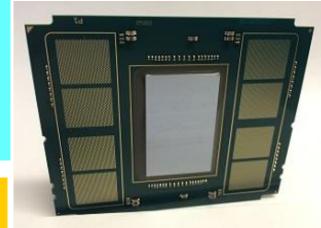
First **self-boot** Intel® Xeon Phi™ processor that is **binary compatible** with main line IA. Boots standard OS.

Significant improvement in scalar and vector performance

Integration of **Memory on package**: innovative memory architecture for high bandwidth and high capacity

Integration of Fabric on package

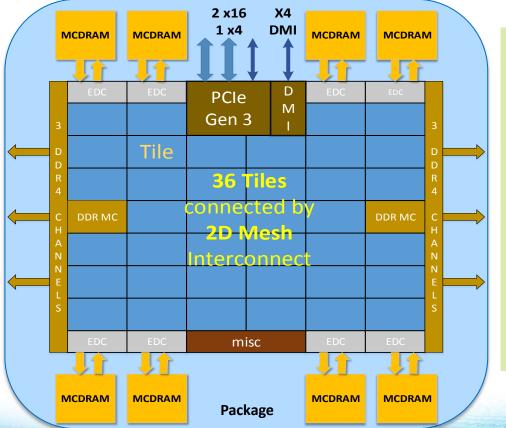
(Baseline)


Three products

KNL Self-Boot W/ Fabric

(Fabric Integrated)

KNL Card


(PCIe-Card)

Knights Landing Overview

Omni-path not shown

Chip: 36 Tiles interconnected by 2D Mesh

Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW

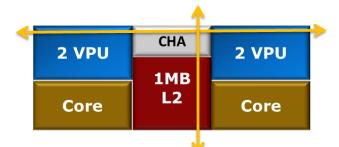
DDR4: 6 channels @ 2400 up to 384GB

IO: 36 lanes PCIe Gen3. 4 lanes of DMI for chipset

Node: 1-Socket only

Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops


Scalar Perf: ~3x over Knights Corner

Streams Triad (GB/s): MCDRAM: 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, as are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). ²Bandwidth numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system

KNL Tile:

2 Cores, each with 2 VPU1M L2 shared between two Cores

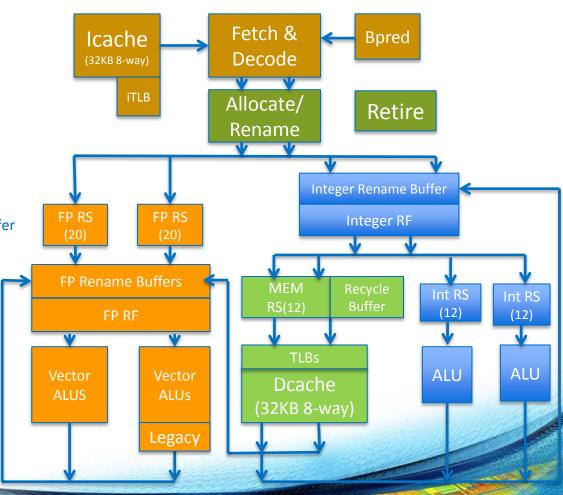
Core: Changed from Knights Corner (KNC) to KNL. Based on 2-wide OoO Silvermont™ Microarchitecture, but with *many* changes for HPC.

4 thread/core. Deeper OoO. Better RAS. Higher bandwidth. Larger TLBs.

2 VPU: 2x AVX512 units. 32SP/16DP per unit. X87, SSE, AVX1, AVX2 and EMU

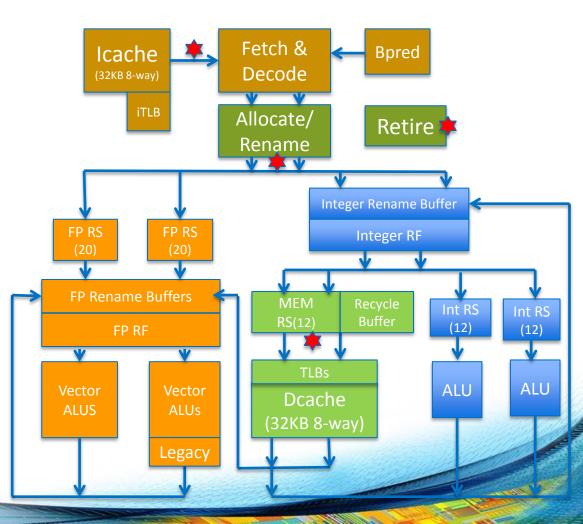
L2: 1MB 16-way. 1 Line Read and ½ Line Write per cycle. Coherent across all Tiles

CHA: Caching/Home Agent. Distributed Tag Directory to keep L2s coherent. MESIF protocol. 2D-Mesh connections for Tile

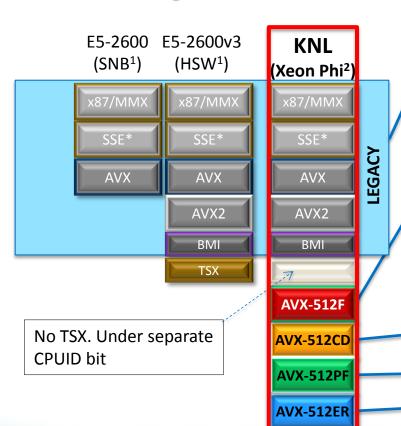

Many Trailblazing Improvements in KNL

Improvements	What/Why
Self Boot Processor	No PCIe bottleneck
Binary Compatibility with Xeon	Runs all legacy software. No recompilation.
New Core: Atom™ based	~3x higher ST performance over KNC
Improved Vector density	3+ TFLOPS (DP) peak per chip
New AVX 512 ISA	New 512-bit Vector ISA with Masks
Scatter/Gather Engine	Hardware support for gather and scatter
New memory technology: MCDRAM + DDR	Large High Bandwidth Memory → MCDRAM Huge bulk memory → DDR
New on-die interconnect: Mesh	High BW connection between cores and memory
Integrated Fabric: Omni-Path	Better scalability to large systems. Lower Cost

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/oerformance_Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.


Core & VPU

- Out-of-order core w/ 4 SMT threads
- VPU tightly integrated with core pipeline
- 2-wide Decode/Rename/Retire
- ROB-based renaming. 72-entry ROB & Rename Buffers
- Up to 6-wide at execution
- Int and FP RS OoO.
- MEM RS inorder with OoO completion. Recycle Buffer holds memory ops waiting for completion.
- Int and Mem RS hold source data. FP RS does not.
- 2x 64B Load & 1 64B Store ports in Dcache.
- 1st level uTLB: 64 entries
- 2nd level dTLB: 256 4K, 128 2M, 16 1G pages
- L1 Prefetcher (IPP) and L2 Prefetcher.
- 46/48 PA/VA bits
- Fast unaligned and cache-line split support.
- Fast Gather/Scatter support



Threading

- 4 Threads per core. Simultaneous Multithreading.
- Core resources shared or dynamically repartitioned between active threads
 - ROB, Rename Buffers, RS: Dynamically partitioned
 - Caches, TLBs: Shared
 - E.g., 1 thread active → uses full resources of the core
- Several Thread Selection points in the pipeline. (*)
 - Maximize throughput while being fair.
 - Account for available resources, stalls and forward progress

KNL ISA

KNL implements all legacy instructions

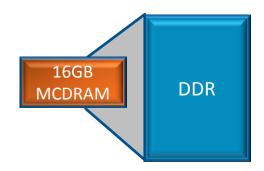
- Legacy binary runs w/o recompilation
- KNC binary requires recompilation

KNL introduces AVX-512 Extensions

- 512-bit FP/Integer Vectors
- 32 registers, & 8 mask registers
- Gather/Scatter

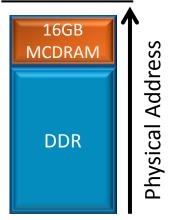
Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

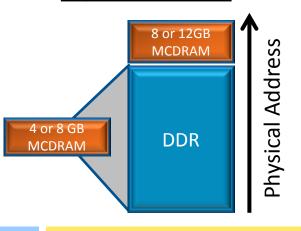

Exponential and Reciprocal Instructions

- 1. Previous Code name Intel® Xeon® processors
- 2. Xeon Phi = Intel® Xeon Phi™ processor

Memory Modes


Three Modes. Selected at boot

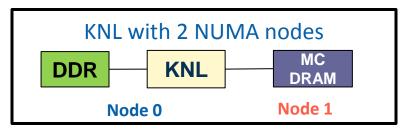
Cache Mode



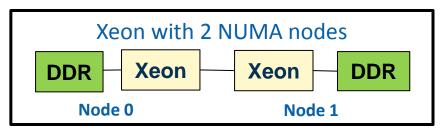
- SW-Transparent, Mem-side cache
- Direct mapped. 64B lines.
- Tags part of line
- Covers whole DDR range

Flat Mode

Hybrid Mode



- MCDRAM as regular memory
- SW-Managed
- Same address space


- Part cache, Part memory
- 25% or 50% cache
- Benefits of both

Flat MCDRAM: SW Architecture

MCDRAM exposed as a separate NUMA node

Memory allocated in DDR by default → Keeps non-critical data out of MCDRAM.

Apps explicitly allocate critical data in MCDRAM. Using two methods:

- "Fast Malloc" functions in High BW library (https://github.com/memkind)
 - Built on top to existing libnuma API
- "FASTMEM" Compiler Annotation for Intel Fortran

Flat MCDRAM with existing NUMA support in Legacy OS

Flat MCDRAM SW Usage: Code Snippets

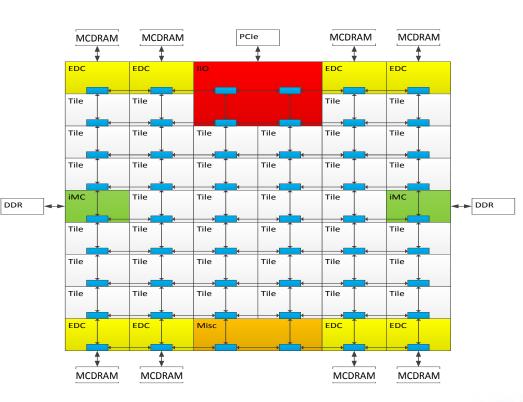
C/C++ (*https://github.com/memkind)

Intel Fortran

Allocate into DDR

```
float *fv;
fv = (float *)malloc(sizeof(float)*100);
```


Allocate into MCDRAM


```
float *fv;
fv = (float *)hbw_malloc(sizeof(float) * 100);
```

Allocate into MCDRAM

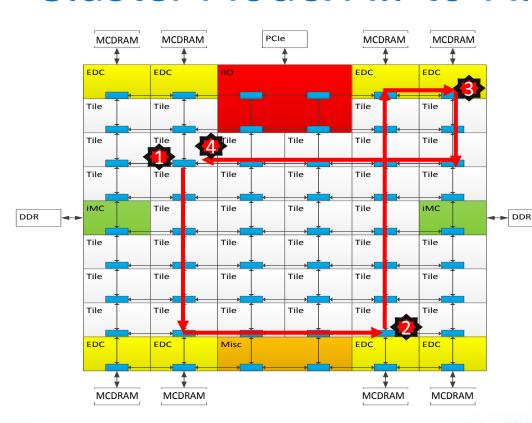
```
c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:)
!DEC$ ATTRIBUTES, FASTMEM :: A

NSIZE=1024
c allocate array 'A' from MCDRAM
c
ALLOCATE (A(1:NSIZE))
```

KNL Mesh Interconnect

Mesh of Rings

- Every row and column is a (half) ring
- YX routing: Go in Y → Turn → Go in X
- Messages arbitrate at injection and on turn


Cache Coherent Interconnect

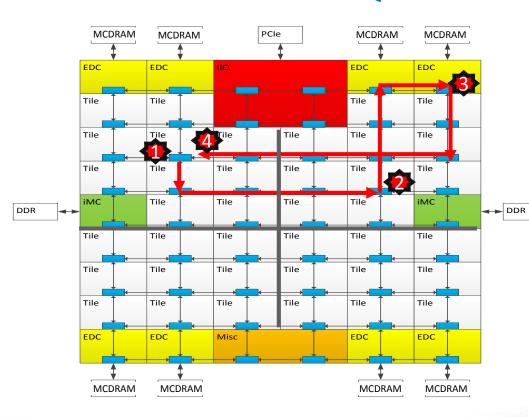
- MESIF protocol (F = Forward)
- Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All (2) Quadrant (3) Sub-NUMA Clustering

Cluster Mode: All-to-All

Address uniformly hashed across all distributed directories


No affinity between Tile, Directory and Memory

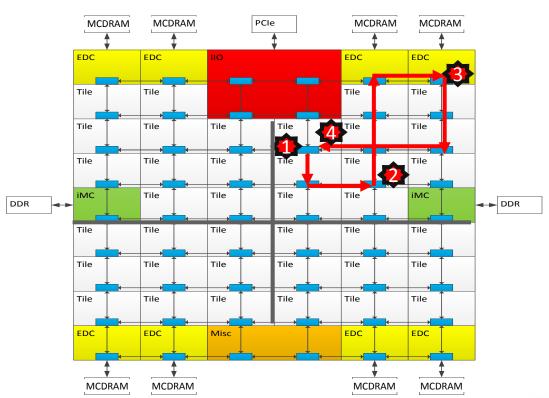
Most general mode. Lower performance than other modes.

Typical Read L2 miss

- 1. L2 miss encountered
- 2. Send request to the distributed directory
- 3. Miss in the directory. Forward to memory
- 4. Memory sends the data to the requestor

Cluster Mode: Quadrant

Chip divided into four virtual Quadrants


Address hashed to a Directory in the same quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all. SW Transparent.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Cluster Mode: Sub-NUMA Clustering (SNC)

Each Quadrant (Cluster) exposed as a separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and Memory

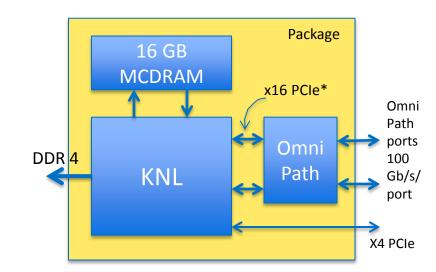
Local communication. Lowest latency of all modes.

SW needs to NUMA optimize to get benefit.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

KNL with Omni-Path™

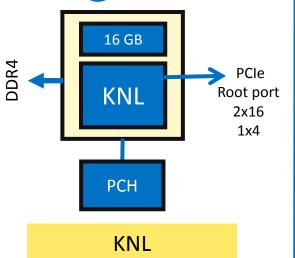
Omni-Path™ Fabric integrated *on package*


First product with integrated fabric

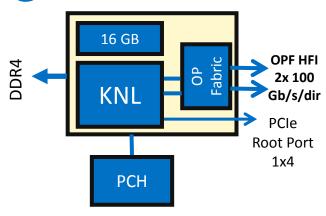
Connected to KNL die via 2 x16 PCle* ports
Output: 2 Omni-Path ports

25 GB/s/port (bi-dir)

Benefits


- Lower cost, latency and power
- Higher density and bandwidth
- Higher scalability

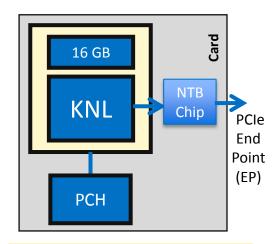
^{*}On package connect with PCIe semantics, with MCP optimizations for physical layer


Knights Landing Products

DDR Channels: 6

MCDRAM: up to 16 GB

Gen3 PCIe (Root port): 36 lanes


KNL with Omni-Path

DDR Channels: 6

MCDRAM: up to 16 GB

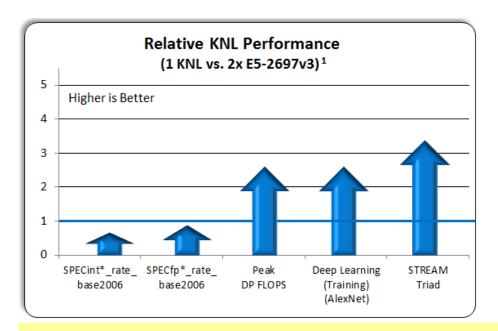
Gen3 PCIe (Root port): 4 lanes

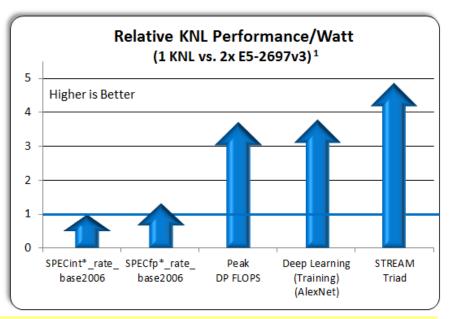
Omni-Path Fabric: 200 Gb/s/dir

KNL Card

No DDR Channels

MCDRAM: up to 16 GB


Gen3 PCIe (End point): 16 lanes


NTB Chip to create PCIe EP

PCle Card

Self Boot Socket

KNL Performance

Significant performance improvement for compute and bandwidth sensitive workloads, while still providing good general purpose throughput performance.

1. Projected KNL Performance (1 socket, 200W CPU TDP) vs. 2 Socket Intel® Xeon® processor E5-2697v3 (2x145W CPU TDP)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in July evaluation of the performance of that product when combined with other products. Source E5-2697v3: www.spec.org, Intel measured AlexNet Images/sec. In equits have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to https://www.intel.com/performance *Other names and brands may be claimed as the property of others.

Backup

High Bandwidth (HBW) Malloc API

```
HBWMALLOC(3)
                             HBWMALLOC
                                                      HBWMALLOC (3)
NAME
       hbwmalloc - The high bandwidth memory interface
SYNOPSIS
       #include <hbwmalloc.h>
       Link with -ljemalloc -lnuma -lmemkind -lpthread
       int hbw check available (void);
       void* hbw malloc(size t size);
       void* hbw calloc(size t nmemb, size t size);
       void* hbw realloc (void *ptr, size t size);
       void hbw free(void *ptr);
       int hbw posix memalign(void **memptr, size t alignment, size t size);
       int hbw posix memalign psize (void **memptr, size t alignment, size t size, int
pagesize);
       int hbw get policy(void);
```

AVX-512 PF, ER and CD Instructions

 Intel AVX-512 Prefetch Instructions (PFI)

 Intel AVX-512 Exponential and Reciprocal Instructions (ERI)

 Intel AVX-512 Conflict Detection Instructions (CDI)

CPUIE	Instructions	Description
PF	PREFETCHWT1	Prefetch cache line into the L2 cache with intent to write
AVX512PF	VGATHERPF{D,Q}{0,1}PS	Prefetch vector of D/Qword indexes into the L1/L2 cache
¥	VSCATTERPF{D,Q}{0,1}PS	Prefetch vector of D/Qword indexes into the L1/L2 cache with intent to write
<u>~</u>	VEXP2{PS,PD}	Computes approximation of 2^x with maximum relative error of 2^{-23}
AVX512ER	VRCP28{PS,PD}	Computes approximation of reciprocal with max relative error of 2 ⁻²⁸ before rounding
AVX	VRSQRT28{PS,PD}	Computes approximation of reciprocal square root with max relative error of 2 ⁻²⁸ before rounding
9	VPCONFLICT{D,Q}	Detect duplicate values within a vector and create conflict-free subsets
AVX512CD	VPLZCNT{D,Q}	Count the number of leading zero bits in each element
¥	VPBROADCASTM{B2Q,W2D}	Broadcast vector mask into vector elements

Glossary

KNL: Knights Landing

KNC: Knights Corner

HSW: Haswell

SNB: Sandy Bridge

OoO: Out-of-Order

ROB: Reorder Buffer

RS: Reservation Stations

VPU: Vector Processing Unit

EMU: Extended Math Unit

TLB: Translation Look-aside Buffer

CHA: Caching/Home Agent

PA/VA: Physical Address/Virtual

Address

MCDRAM: "Multi-Channel" DRAM. High

BW memory

EDC: Memory Controller for MCDRAM

MESIF: Coherence procotol (Modified,

Exclusive, Shared., Invalid, Forward)

NTB: Non-Transparent Bridge

PCH: Chipset

NUMA: Non-Uniform Memory Access

