

PULP: A Parallel Ultra Low Power platform for next generation IoT Applications

Davide Rossi¹

Francesco Conti¹, Andrea Marongiu^{1,2}, Antonio Pullini², Igor Loi¹, Michael Gautschi², Giuseppe Tagliavini¹, Alessandro Capotondi¹, Philippe Flatresse³, Luca Benini^{1,2} ¹DEI-UNIBO, ²IIS-ETHZ, ³STMicroelectroncis

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich	Near-S	ensor Proc	essing	
Image	INPUT (BANDWIDTH	COMPUTATION DEMAND	IAL OUTPUT BANDWIDTH	COMPRESSION FACTOR
Tracking: [*Lagroce2014]	80 Kbps	1.34 GOPS	0.16 Kbps	500x
Voice/Sound Speech: [*VoiceControl]	256 Kbps	100 MOPS	0.02 Kbps	12800x
Inertial Kalman: [*Nilsson2014]	2.4 Kbps	7.7 MOPS	0.02 Kbps	120x
Biometrics SVM: [*Benatti2014]	16 Kbps	150 MOPS	0.08 Kbps	200x

Extremely compact output (single index, alarm, signature)

Computational power of ULP µControllers is not enough

Parallel worloads

PULP: pJ/op Parallel ULP computing

pJ/op is traditionally the target of ASIC + μ Controllers

- Scalable: to many-core + heterogeneity
 Best-in-class LP silicon technology
 Programmable: OpenMP, OpenCL, OpenVX
 Open: Software & HW
 - Processor & Compiler Infrastructure
 Compiler Infrastructure

From ULP computing to parallel + heterogeneous ULP computing 1mW-10mW active power

Near-Threshold Multiprocessing

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Minimum Energy Operation

Near-Threshold Computing (NTC):

- **1.** Don't waste energy pushing devices in strong inversion
- 2. Recover performance with parallel execution
- **3.** Aggressively manage idle power (switching, leakage)

- Single issue in-order is most energy efficient
- Put more than one + shared memory to fill cluster area

SIMD + MIMD + sequential

Near Threshold but parallel → Maximum Energy efficiency when Active

+ strong power management for (partial) idleness

OR1ON: Extended OpenRISC Core

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

- 4-stage OpenRISC
- IPC ~ 1
- DSP extensions:
 - Hardware loops
 - Eliminates branching overhead
 - LD/ST + post-increment
 - Enhanced vector indexing
 - Small vector support (SIMD)
 - 2x 16-bit operations
 - 4x 8-bit operations
 - Unaligned memory accesses
 - To better exploit SIMD

UP TO 5x performance improvement and 3x reduction of energy!!!

Silicon Implementation

UTBB FD-SOI provides good features for ULP design:

Good behavior at low voltage

Body bias for power and variability management

Body biasing with UTBB FD-SOI technology

RVT transistor (conventional-well)

LVT transistor (flip-well)

10000

1000

100

10

1

0.1

0.01

0.001

0

100

200

300

Frequency (MHz)

400

Leakage (nA)

BODY BIAS WINDOWS

 Image: Constraint of the second state of the second sta

500

RVT: Regular Voltage Threshold LVT: Low Voltage Threshold

FBB: Forward Body Bias RBB: Reverse Body Bias

Poly biasing allow to trade performance/leakage At design time

RVT transistors: low leakage + flexible power management (FBB + RBB)

600

700

State retentive (no state retentive registers and memories) Ultra-fast transitions (tens of ns depending on n-well area to bias) Low area overhead for isolation (3µm spacing for deep n-well isolation) Thin grids for voltage distribution (small transient current for wells polarization) Simple circuits for on-chip VBB generation (e.g. charge pump)

But even with aggressive RBB leakage is not zero!

Body Biasing for Variability Management

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

15

ULP memory implementation: latch-based SCM

- "Standard" 6T SRAMs:
 - High VDDMIN
 - Bottleneck for energy efficiency
- Near-Threshold SRAMs (8T)
 - Lower VDDMIN
 - Area/timing overhead (25%-50%)
 - High active energy
 - Low technology portability
- Standard Cell Memories:
 - Wide supply voltage range
 - Lower read/write energy (2x 4x)
 - Easy technology portability
 - Controlled P&R mitigates area overhead

256x32 6T SRAMS vs. SCM

Architectural Technology Awareness

Exploiting body biasing

- The cluster is partitioned in separate clock gating and body bias regions
- Body bias multiplexers (BBMUXes) control the well voltages of each region
- Each region can be **active** (FBB) or **idle** (deep RBB \rightarrow low leakage!)

State-Retentive + Low Leakage + Fast transitions

Power Management: Hardware Synchronization

GOALS:

- → Reduce parallelization overhead
- → Accelerate common OpenMP and OpenCL patterns (e.g. Task creation)
- → Automatically manage shut down of idle cores

Power Management: External Events

GOALS: → Automatically manage shut down of cores during data transfers

Heterogeneous Memory Architecture

Shared I\$ to recover SCMs area overhead Private L0 buffers to reduce pressure on shared I\$

The PULP "Family"

PULPv1

Tester chip

*Does not include IOs

Peak GOPS/W competitive with best-in-class near-threshold (16bit) ULP microcontrollers, plus more than x100 peak GOPS!

= PULPv1 + 2 DVFS regions (SoC + CLUSTER) + Event Unit + Peripherals

= PULPv2 + Extended cores + HW Synch + Shared Cache + HWCE + Shared IOs

PULP's Summary

	PULPv1	PULPv2	PULPv3	R STUE DI BC
# of cores	4	4	4	
L2 memory	16 kB	64 kB	128 kB	1
TCDM	16kB SRAM	32kB SRAM	32kB SRAM	
		8kB SCM	16kB SCM	
Reconf. pipe. stages	no	yes	ves	
1\$	4kB SRAM private	4kB SCM private	4kB SCM shared	
Body bias regions	yes	yes	yes	
DVFS	no	yes	yes	
I/O connectivity	JTAG	full	full multiplexed	
Extended processor	no	no	Yes	
Event unit	no	yes	yes+ HW synchro	
Debug unit	no	no	yes	
	PULPv1	PULPv2	PULPv3	
Status	silicon proven	post tape out	pre tape out	
Technology	FD-SOI 28nm	FD-SOI 28nm flip-	FD-SOI 28nm	
	conventional-well	well	conventional-well	
Voltage range	0.45V - 1.2V	0.3V - 1.2V	0.5V - 0.7V	
BB range	-1.8V - 0.9V	0.0V - 1.8V	-1.8V - 0.9V	
Max freq.	475 MHz	1 GHz	200 MHz	
Max perf.	1.9 GOPS	4 GOPS	1.8 GOPS	
Peak en. eff.	60 GOPS/W	135 GOPS/W	385 GOPS/W	

*equivalent 32-bit RISC operations

Breaking the GOPS/mW wall

Closing The Accelerator Efficiency Gap with Agile Customization

Fractal Heterogeneity

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Fixed function accelerators have limited reuse... how to limit proliferation?

Learn to Accelerate

 Brain-inspired (deep convolutional networks) systems are high performers in many tasks over many domains

Image recognition
[RussakovskyIMAGENET2014]

Speech recognition [HannunARXIV2014]

Flexible acceleration: learned CNN weights are "the program"

PULP CNN Performance

Average performance and energy efficiency on a 32x16 CNN frame

PULPv3 ARCHITECTURE, CORNER: tt28, 25 $^{\circ}$ C, VDD= 0.5V, FBB = 0.5V

Thanks for your attention!!!

www-micrel.deis.unibo.it/pulp-project

References

[RuchIBM11] Ruch, P., "Toward five-dimensional scaling: How density improves efficiency in future computers," *IBM Journal of Research and Development*, vol.55, no.5, pp.1-13, 2011.

[AziziISCA10] O. Azizi, et. al., "Energy-Performance Tradeoffs in Processor Architecture and Circuit Design: A Marginal Cost Analysis" *Proceedings of the 37th annual international symposium on Computer architecture, ISCA 2010, pp.* 26-36, June 19–23, 2010.

[Nilsson2014] John-Olof Nilsson et.al., "Foot-mounted inertial navigation made easy", 2014 International Conference on Indoor Positioning and Indoor Navigation, 27-30 October 2014.

[Benatti2014] S .Benatti et. al., "EMG-based hand gesture recognition with flexible analog front end," IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.57,60, Oct. 2014.

[Lagorce2014] Lagorce et. al., "Asynchronous Event-Based Multikernel Algorithm for High-Speed Visual Features Tracking", IEEE Trans Neural Netw Learn Syst. 2014 Sep 16.

[VoiceControl] TrulyHandsfree[™]Voice Control, available: http://www.sensory.com/wp-content/uploads/80-0342-A.pdf

[VivekDeDATE13] De, Vivek, "Near-Threshold Voltage design in nanoscale CMOS," Design, Automation & Test in Europe Conference & Exhibition DATE, 2013.

[DoganICSDPTMO2011] Dogan, A. Y., et al., "Power/performance exploration of single-core and multi-core processor approaches for biomedical signal processing," Integrated Circuit and System Design, Power and Timing Modeling, Optimization, and Simulation, pp. 102-11, 2011.

[RussakovskyIMAGENET2014] O. **Russakovsky**, "ImageNet Large Scale Visual Recognition Challenge", International Journal of Computer Vision, 2014.

[HannunARXIV2014] A. Hannun " Deep Speech: Scaling up end-to-end speech recognition", arXiv, 2014.

Microcontrollers Landscape

*Measured on our first prototype

The main constraint here is the power envelope

