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Rosenblatt’s perceptron (1957)

pictures from http://www.rutherfordjournal.org/article040101.html
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Rosenblatt’s perceptron (1957)
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I ”the embryo of an electronic computer that [the
Navy] expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence”

(in NYT according to wikipedia)
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Machine Learning

Wx y

I ML allows us to harness training data
(
xn, tn

)
n=1...N

I ML allows us to harness parallelization
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Machine Learning
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The XOR problem

x1

x2
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The XOR problem and multi-stage processing

x1
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The XOR problem and multi-stage processing

x1

x2

x1 · x2
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Multi-stage processing

x y

h1 h2 h3

W 01 W 12 W 23 W out
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“It’s the features, stupid!”
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“It’s the features, stupid!”

A common computer vision pipeline before 2012
1. Find interest points.

2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.
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“It’s the features, stupid!”

f1

fn

A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.

4. Combine the descriptors into a representation of the
image.
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“It’s the features, stupid!”
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A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.
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“It’s the features, stupid!”

high-rise

?

cathedral

f2

f1

I This creates a representation that even a linear
classifier can deal with.

bottom line: non-linear pipelines are useful
(aka “the representation matters”)
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What do good low-level features look like?

I Local features that are
often found to work well
are based on oriented
structure (such as Gabor
features)

I These were discovered
again and again (also in
other areas) and are
closely related to the
Short Time Fourier
Transform.
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Most common networks interleave matrix multiplies with
element-wise non-linearities:

y(x) = W outh(W 23h(W 12h(W 01x)))

Usually there are constant “bias”-terms as well.
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Common non-linearities:
sigmoid: h(a) = 1

1+exp(a)
ReLU: h(a) = a · [a > 0] tanh: h(a) = ea−e−a

ea+e−a
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

For classification tasks, turn class outputs into probabilities
using the “softargmax” function:

p(Ck |x) =
exp(yk(x))∑

j exp(yj(x))
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

For training, use a (large) training set
(
xn, tn

)
n=1...N and

minimize a suitable cost-function.
The minimization is usually done using stochastic gradient
descent (SGD).
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The most common choices of cost function

I Regression (predict real values):

cost =
1
2

N∑
n=1

‖y(xn)− tn‖2

I Classification (predict discrete labels):

cost = −
N∑

n=1

K∑
k=1

tnk log p(Ck |xn)

where tnk = 1 iff training case n belongs to class k .
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Stochastic gradient descent (SGD)

θ(0)

θ(τ )

θ(τ+1)= θ(τ ) − η∂cost(xn,tn)
∂θ

new parameter value

learning rateold parameter value

For one or several training cases at a time, iterate:
1. compute cost (forward pass)
2. compute derivatives (backward pass)
3. update parameters

Roland Memisevic Deep Learning August 23, 2015



Stochastic gradient descent (SGD)

θ(0)

θ(τ )

θ(τ+1)= θ(τ ) − η∂cost(xn,tn)
∂θ

new parameter value

learning rateold parameter value

I Most operations performed on each training example
will be matrix-vector products.

I To get a higher arithmetic intensity it is common to
use mini-batches (often of size ≈ 100, currently...).

I Each full pass through the training set is called an
epoch.
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Computing derivatives: Error back-propagation
(backprop): Rumelhart, Hinton, Williams 1986

x y

h1 h2 h3

W 01 W 12 W 23 W out

cost(x , t)

I Use the chainrule! For regression and classification we get:
∂cost
∂y(xn)

= y(xn)− tn

I Next: If y has any parameters, W out, collect them using:

∂cost
∂W out = (y(xn)− tn) ·

∂y(xn)

∂W out

I Next: Descend to the next layer by computing

∂cost
∂h3

=
∂cost
∂y(xn)

· ∂y(xn)

∂h3(xn)
...and so on...
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Backprop general form

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

bprop grad

∂f
∂wf

∂f
∂g

fprop

f

I Backprop can be thought of as an engineering
principle, that prescribes how to design an
end-to-end train-able system from differentiable
components:

I Use components which provide the methods fprop,
bprop and grad. Then backprop can be automated.

I Well-suited for support by software frameworks
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Potential Issues

I “But what about local minima?”
I “But what about overfitting?”
I Vanishing gradients
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The cost surface/local optima

I Local minima not an issue in practice
I This is probably due to high dimensional parameter

space, which causes most critical points to be saddle
points not local optima.

I Some recent theoretical work supports this view
(Choromanska et al. 2014); (Dauphin, et al. 2014)

figure from wikipedia
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Overfitting

w
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Overfitting
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Overfitting in regression

(Bishop 2006: Pattern recognition and machine learning)
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Preventing overfitting in neural networks

I Early stopping:

training iteration

training cost

training iteration

validation cost

I Weight decay (somewhat outdated): add a weight
penalty to the training objective (weight constraints
now more common)

I Dropout (Hinton et al., 2012): Corrupt hidden unit
activations during training

I More data
I Weight sharing (reduce the number of parameters):
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Weight sharing

x y

h1 h2 h3

W 1,2
2,3

W 2,3
5,6

0x32ff

I Parameters can be shared by having them point to
the same memory location.

I Very common way to reduce parameters and
encode prior knowledge.

I Central ingredient in conv-nets (CNNs) and recurrent
nets (RNNs).

I Caveat: It requires long-range communication.
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The vanishing gradients problem

x y

h1 h2 h3

W 01 W 12 W 23 W out

I The backward-pass is a sequence of matrix multiplies.
I Depending on the magnitude of the eigenvalues,

initial values can blow up or decay to zero.
I This can may learning difficult or slow.
I Potential solutions: architectural tricks (for example,

the “LSTM” unit)
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Neural nets learn distributed representations

x y

h1 h2 h3

W 01 W 12 W 23 W out

I Neural networks encode information as vectors of real
values.

I This makes it easy to encode conceptual similarities.
In a text processing task, for example:

I If user searches for Dell notebook battery size, we
would like to match documents with “Dell laptop
battery capacity”

I If user searches for Seattle motel, we would like to
match documents containing “Seattle hotel”

(Example from Chris Manning)
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Summary so far

1. Non-linear pipelines are good
2. It is easy to train non-linear pipelines end-to-end using

back-prop + SGD
3. Local minima are a non-issue
4. Overfitting is an issue, but it can be solved

I The two crucial changes that made deep learning
work on real-world tasks ≈ 2010:

GPUs + Large datasets
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DL impact in speech recognition

figure from Yoshua Bengio
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Convolutional networks (CNN)

I LeCun et al. 1998
I The gist: Instead of feeding a large image to the

network, feed small patches to the network.
I → dramatic reduction of parameters
I CNNs also have subsampling layers, so higher layers

see more of the image.
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ImageNet challenge 2012
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ImageNet challenge 2012

some first-layer features

some results

Krizhevsky, Sutskever, Hinton; 2012
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High-level features

Girshick et al., 2014
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GoogLeNet (Szegedy et al. 2014)

I Exercise in (a) scaling up, (b)
unconventional architectures

I Won ImageNet 2014 with 6.66%
top-5 error rate

I A variation of this network including
BatchNormalization (Ioffe, Szegedy,
2015) achieves 4.8% top-5 error rate,
surpassing the accuracy of human
raters
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Emotion recognition in the wild Challenge 2013
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Conv-nets learn good generic features

non-imagenet classes:

(Donahue et al, 2013)
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Word embeddings

I Bengio et al 2000
I This is a way to learn distributed representations for

symbols (words).
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Word embeddings

King - Man + Woman = Queen

Mikolov et al. 2013
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Robotics/Reinforcement Learning

Levine et al. 2015 Mnih et al. 2013

Roland Memisevic Deep Learning August 23, 2015



Recurrent networks (RNN)

picture from http://www.cs.toronto.edu/ asamir/cifar/Ilya slides.pdf

I Stepping the network T time steps yields the
equivalent of a T -layer feedforward net with weights
that are shared between layers.

I Training the network by unrolling it in time is called
back-prop-through-time (BPTT).

I Vanishing gradients especially problematic here.
Roland Memisevic Deep Learning August 23, 2015



Long-Short Term Memory (LSTM)

(Hochreiter, Schmidthuber; 1997)
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RNN applications (thanks mainly to LSTM)

I Machine Translation (Sutskever et al. NIPS 2014), (Cho
et al. Arxiv 2014)

I Speech synthesis (Fan et al. INTERSPEECH 2014)
I Speech recognition (Hannun et al., 2014)
I Handwriting generation

http://www.cs.toronto.edu/ graves/handwriting.html
I Text generation
I Caption generation
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The encoder-decoder architecture

Machine translation examples:

Sutskever et al. NIPS 2014, Bahdanau et al. 2014
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Caption generation (Xu et al 2015)
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Handwriting generation

http://www.cs.toronto.edu/ graves/handwriting.html
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Generating text

from: Andrej Kaparthy:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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DRAWing (Gregor et al., 2015)
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Sentence embeddings (Kiros et al 2015)
I A natural generalization of a word embedding is a

sentence embedding:
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Deep Learning as a compute paradigm

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

I perform a series of operations to
solve a task

I + use learning to define the
computations

I + make each computation parallel
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Deep Learning as a compute paradigm

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

I perform a series of operations to
solve a task

I + use learning to define the
computations

I + make each computation parallel

Dense, parallel computations are easy, if we
don’t need to program them.
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Deep learning needs parallel hardware.

Parallel hardware needs deep learning.
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Part II: Research directions, software tools, outlook
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Structured prediction
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Structured prediction
Prediction:

yx

Structured prediction:

x y

Problem: combinatorial explosion
Solution: Impose tractable dependency structure

x y

I Applications: Scene labeling, text, speech, ...
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Solution proposed in 1998

I Main insight: When layers are complex graphs,
back-prop still works (LeCun et al 1998)

I This observation was recycled in 2001 under the name
Conditional Random Field
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Streetview (Goodfellow et al, ICLR 2014)

I recent extension to recognizing text in images: eg.
Jaderberg et al. ICLR 2015

Roland Memisevic Deep Learning August 23, 2015



Towards scene understanding

Farabet et al, 2013
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Unsupervised learning
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The curse of dimensionality

I There are 216∗16 tiny binary images
of size 16× 16 pixels.

I A child of age 3 has seen less than
10 billion images and much fewer
labeled images.

I How is it possible we can do any
vision?
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The curse of dimensionality

All natural images

All images
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Unsupervised learning

x

z

g(x)f (z)

I Data may be distributed along some
lower-dimensional manifold in the dataspace.
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Principal Components Analysis (PCA)

x2

x1

I If that manifold is linear, learning is easy and it can
done in closed form: Compute the eigenvectors of
the data covariance matrix.
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Autoencoders

sk

xj

Akj

Wjk

x

r(x)

x̂j

I If the manifold is non-linear (or
not a really a manifold) we
can use autoencoders.

I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress the inputs.
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Autoencoders

xj

Akj

Wjk

x

r(x)

x̂j

sk

I In practice, it is more common
to use overcomplete hiddens
and to enforce compression in
other ways (for example, by
making the hidden activations
sparse).
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Autoencoders learn to do compression

r(x) = Wh
(
WTx + b

)

x

r(x)

0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0
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Autoencoders learn to do compression

r(x) = Wh
(
WTx + b

)

x

r(x)

0 0 0 0 0

0 0 0 0

1 10

00 1

10
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Stacked autoencoders (Le et al. 2012)
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Other unsupervised methods

I Restricted Boltzmann machines
I Independent components analysis
I Sparse coding
I K-means clustering
I Most of these models can be implemented as a form

of autoencoder, or trained using their own,
specialized learning criteria.
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The utility of unsupervised learning

I Unsupervised learning helps when the amount of
labeled data is small.

I But its utility pales in comparison to supervised
back-prop on lots of data.

I Possible reasons:
I (i) reconstruction may be the wrong objective
I (ii) we need to scale up more
I (iii) we need to rethink unsupervised learning
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Architecture/non-linearities
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wTx ?

Mel, 1994
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”Transistor neurons”

z

[
x;y

]xi yj

zk

I Many tasks are based on
encoding relations not things:
Analogy making, motion
understanding, invariance,
depth estimation

I Multiplicative neurons may be
a way to efficiently learn and
encode such structure.
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LSTM uses gating to address vanishing gradients

(Hochreiter, Schmidthuber; 1997)
I LSTM addresses the vanishing gradients problem by

introducing a constant unit (with self-connection 1.0)
surrounded by “control logic” (gating units).
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Other RNN gating mechanisms

xjxi

zk

z

x t−1 x t

Cho et al 2014 Michalski et al 2014
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Orthogonal transformations

UTLU =

R1
. . .

Rk

 Ri =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]

x

y = Lx

UT

U
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sine waves
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sine waves
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sine waves
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sine waves
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chirps
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(CRBM vs RNN vs grammar cells)
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Harmonics
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Form attention to differentiable models of
computation and “neural programs”
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Attention

Hard attention Soft attention
(Mnih et al, 2014) (Bahdanau et al, 2014)
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Differentiable models of computation
I Neural Turing Machine (Graves et al, 2014)
I Memory Networks (Weston et al, 2014)
I Learning to Transduce with Unbounded Memory

(Grefenstette et al. 2015)

I To be able to back-propagate, all operations have to
be based on differentiable operations

I (But sampling-based methods may work otherwise)
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Learning to execute (Zaremba, Sutskever; 2014)
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From neural networks to “neural programs”

Kumar et al 2015
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From neural networks to “neural programs”

Kumar et al 2015
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Von Neumann via Deep Learning

I In the past we simulated neural nets on classic
hardware and it didn’t work

I Today we simulate classic hardware on neural nets
and it works beautifully

The benefit of today’s way: Add parallelization and your
“program” may run faster and faster and faster...
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Towards hardware-friendlier deep learning
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Deep learning with limited precision

I Gupta et al, 2015
I Courbariaux et al, 2015:

Format Prop. Up. PI MNIST MNIST CIFAR10 SVHN
Single float 32 32 1.05% 0.51% 14.05% 2.71%
Half float 16 16 1.10% 0.51% 14.14% 3.02%
Fixed point 20 20 1.39% 0.57% 15.98% 2.97%
Dynamic fxp. 10 12 1.28% 0.59% 14.82% 4.95%
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Spiking networks

Sparsity levels in two networks
trained on CIFAR-10.
N1=(1000-2000-3000),

N2=(2000-2000-2000 units).
(N1 Crpt, N2 Crpt trained with

dropout).

figure by Kishore Konda

I Neural network activations
(real and artificial) tend to
be sparse.

I So we are sending around,
and multiplying by, lots of
floating-point zeros.

I We are also applying
synchronization and logic,
although real brains don’t
seem to.

I The logical conclusion:
spiking networks (but it is
not clear yet how to train
them)
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Back-prop using asynchronous, local
computations?

x y

h1 h2 h3

W 01 W 12 W 23 W out

In the brain, where is the backward
channel?
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Towards back-prop using local computations
I Hinton 2007: Use the temporal derivative to encode

the error derivative!
I (see also: Bengio et al. 2015)
I Recall that the derivative of most common cost

functions is, conveniently, given by

∂cost
∂y(xn)

= y(xn)− tn

How local back-prop may work
I Let top-layer drive the activations towards the correct

value.
I Let feedback weights transport that change downward.
I Make weight changes proportional to the rate of change

of a postsynaptic neuron and the value of the
pre-synaptic neuron.
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Is the brain doing local back-prop?
I (Hinton 2007): “What would neuro-scientists see if this

is what’s happening in the brain?”
I They should see this (and they do!):

picture from http://www.scholarpedia.org/article/Spike-timing dependent plasticity
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Research directions

I Applications
I Architectures (attention, vanishing gradients, neural

programs)
I Reinforcement learning
I Theory
I Scaling up, hardware
I Multimodality and grounding: vision, language,

speech, robotics
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Tricks and facts

I Do not be afraid of non-differentiabilities (or even
discontinuities). They don’t matter.

I Gradient clipping (constraining the norm of the
gradients) helps avoid getting thrown out by NaNs
too often (especially for recurrent nets).

I Batch-normalization (Ioffe, Szegedy; 2015) helps
training: Normalize hidden unit activations to have
fixed means/standard deviations during training, by
drawing the statistics form the current mini-batch.

I Adding a “momentum-term” to your SGD updates
can have a very strong influence on convergence
speed.

I You rarely successfully “try out” a model on a new
task, you make the model work on the task.
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Deep Learning Software/Frameworks

I Back-prop: torch, theano
I Add-ons: blocks, fuel, lasagne
I Low-level: cuDNN, nervanagpu, cudamat
I Convnets: caffe, overfeat, cuda-convnet,

sklearn-theano
I Word embeddings: word2vec (available in gensim)
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sklearn-theano
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theano

http://www.deeplearning.net/tutorial/
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theano code snippet (from deeplearning.net)

import theano
from theano import tensor

a = tensor.dscalar()
b = tensor.dscalar()

c = a + b

f = theano.function([a,b], c)

assert 4.0 == f(1.5, 2.5)
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theano code snippet: linear regression
import theano
import theano.tensor as T

#define computational graph:
W = T.dmatrix()
inputs = T.dmatrix()
targets = T.dmatrix()
outputs = T.dot(W.T, inputs)
cost_theano = ((outputs - targets)**2).mean()
grad_theano = T.grad(cost_theano, W)

#compile functions:
cost = theano.function([W,inputs,targets], cost_theano)
grad = theano.function([W,inputs,targets], grad_theano)

#try on some _random_ data:
my_w = 0.01*randn(10,1).astype("float32")
my_inputs = randn(100,10).T.astype("float32")
my_targets = randn(1,100).astype("float32")
print cost(my_w, my_inputs, my_targets)
my_w -= 0.1*grad(my_w, my_inputs, my_targets)
print cost(my_w, my_inputs, my_targets)
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theano code snippet: autoencoder

.

.

.
prehiddens = T.dot(inputs, W)
hiddens = (prehiddens > selectionthreshold) * prehiddens
outputs = T.dot(hiddens, W.T) + bvis

cost = T.mean(T.sum(0.5 * ((inputs - outputs)**2), axis=1))
grad = T.grad(cost, params)
.
.
.
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Thank you

Questions?

www-labs.iro.umontreal.ca/˜ memisevr/talks/memisevicHotchips2015.pdf
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Deep learning needs parallel hardware.

Parallel hardware needs deep learning.

www-labs.iro.umontreal.ca/˜ memisevr/talks/memisevicHotchips2015.pdf
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