# High-level Synthesis of Memory Bound and Irregular Parallel **Applications with Bambu**

Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi

# **High Performance Reconfigurable Computing**

## **Application Domain**

- Several emerging application are **irregular**
- Process large pointer-based data structures (graphs, trees, grids)
- Generate unpredictable memory accesses
- Memory bandwidth bound, high synchronization intensity
- Feature high degrees of (task-level) parallelism
- Examples: bioinformatics, knowledge discovery, data analytics

### Hybrid Architectures

- CPUs + FPGA co-processors (e.g., Convey HC-x systems)
- Idea: execute performance critical kernel on dedicated hardware components
- Promising for memory bound and irregular applications **however...**
- ... requires experienced designers for the implementation of the custom hardware accelerators
- High development costs
- Long time for prototype for complex designs

### High Level Synthesis (HLS)

- Allows the automatic implementation of a digital circuit, starting from its behavioral description (C/C++ code)
- May fill the gap between development costs and benefits of hardware acceleration (performance/power)

Main Limitations of Typical HLS Frameworks

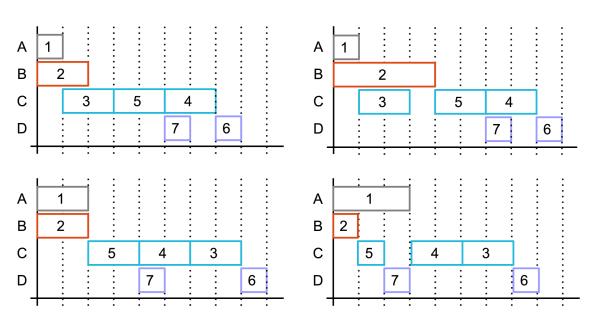
### **Coarse-grained parallelism exploitation**

- Most HLS approaches focus on Instruction-level Parallelism
- Limitations due to
- Input language semantics
- Architectural model (e.g., Finite State Machine with Datapath, FSMD)
- Both inherently serial

### Support for complex memory subsystems

- Large amounts of data to process
- Memory operations may represent a bottleneck for performance
- Fundamental to support shared/distributed memories
- Higher memory availability/bandwidth

### **Proposed Solutions**


### Novel architectural model for HLS

• Exploit s a Parallel Controller for managing concurrent execution flows

### Hardware modules for interfacing shared parallel memories

- Concurrency and synchronization management
- Modules automatically integrated in the final design

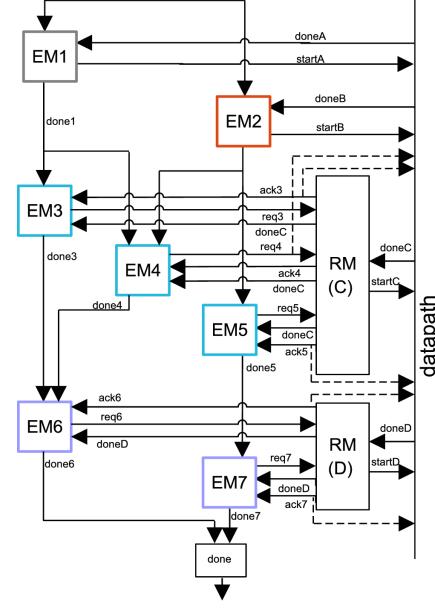
- Set of communicating control elements (Execution Managers, EM)
- Dynamic execution paradigm
- Dedicated hardware for checking Satisfaction of dependency constraints
- $\rightarrow$  Resource availability  $\rightarrow$  interaction with arbitres (Resource Managers, RM)
- Linear complexity with respect to the number of operations/tasks
  - OP3 FU: C



**Dynamic Behavior: Example of Execution Traces when** Varying Runtime Latencies

- Manage **concurrency** delay penalties
- Manage **synchronization** memory operations

# Vito Giovanni Castellana, Antonino Tumeo Pacific Northwest National Laboratory, HPC – Richland, WA, USA vitogiovanni.castellana@pnnl.gov, antonino.tumeo@pnnl.gov



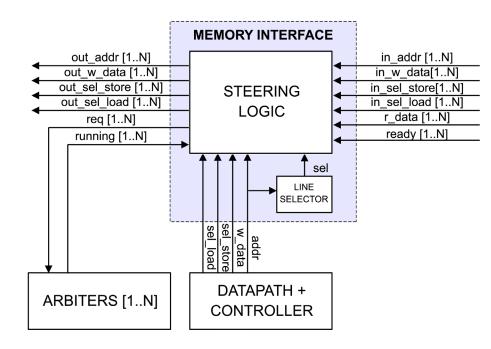

# **Parallel Controller Architecture**

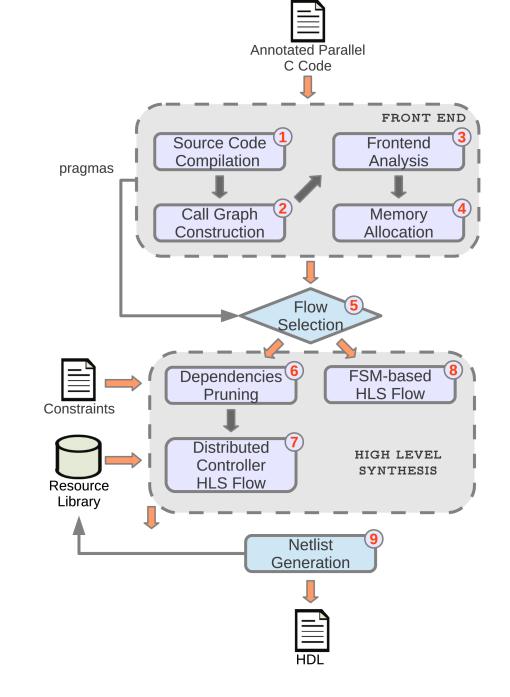
- Each EM establishes when operations/tasks can start at runtime
- → Regardless of their latency



**Example Dependence Graph** 




**Associated Parallel Controller** 


# **Memory Interface Controllers**

• Map unpredictable memory accesses to several memory ports  $\rightarrow$  Dynamic resolution of memory addresses  $\rightarrow$  support for pointer arithmetics

lightweight arbiters associated with no

hardware implementation of <u>atomic</u>





- Evaluation on a set of OpenMP benchmarks → Up to six concurrent kernels
- Comparison (Performance/Area) against Bambu 0.9 and LegUP 3.0 (accelerators only) → Target device: Altera Cyclone II
- → Target frequency: 100 MHz
- Target memory architectures: single and 4-banked shared memories

|             | Speedup, 1ch |          | Speedup, 4ch |          |
|-------------|--------------|----------|--------------|----------|
| Benchmark   | vs LegUp     | vs Bambu | vs LegUp     | vs Bambu |
| ADD         | 1.73         | 1.36     | 9.46         | 4.98     |
| DOT PRODUCT | 1.15         | 1.42     | 5.71         | 5.96     |
| HISTOGRAM   | 3.14         | 2.74     | 9.68         | 5.63     |
| LOS         | 2.77         | 2.29     | 5.43         | 5.62     |
| MATRIXMUL   | 0.96         | 1.2      | 2.93         | 3.27     |
| MATRIXTRANS | 0.82         | 1.23     | 3.55         | 3.56     |
| PERFECTHASH | 1.23         | 1.57     | 4.56         | 3.87     |
| Average     | 1.62         | 1.77     | 4.29         | 4.7      |

### **Performance Evaluation**

|             | Area ratio, 1ch |          | Area ratio, 4ch |          |
|-------------|-----------------|----------|-----------------|----------|
| Benchmark   | vs LegUp        | vs Bambu | vs LegUp        | vs Bambu |
| ADD         | 1.05            | 2.62     | 1.8             | 4.51     |
| DOT PRODUCT | 1.34            | 3.5      | 2.02            | 5.28     |
| HISTOGRAM   | 3.08            | 3.26     | 3.74            | 3.96     |
| LOS         | 3.18            | 4.98     | 3.93            | 6.14     |
| MATRIXMUL   | 1.14            | 2.75     | 1.85            | 4.45     |
| MATRIXTRANS | 1.07            | 4.3      | 1.8             | 7.25     |
| PERFECTHASH | 3.4             | 4.1      | 5.61            | 6.77     |
| Average     | 2.04            | 3.64     | 2.96            | 5.48     |

Area Evaluation

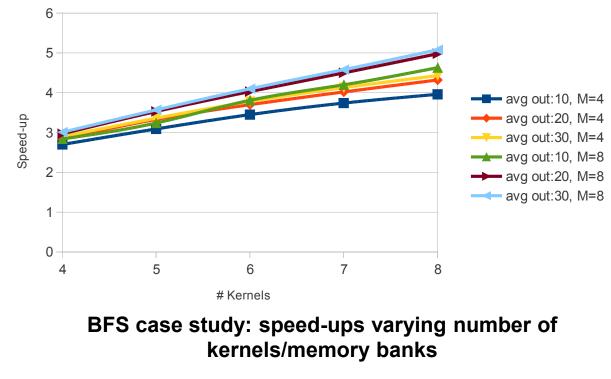
# Fabrizio Ferrandi

Politecnico di Milano, DEIB – Milano, Italy fabrizio.ferrandi@polimi.it








Proudly Operated by **Battelle** Since 1965

# **Proposed High-level Synthesis Flow**

- Extends the **Bambu** framework
- Input: C-code specification → Optionally annotated
- Output: Verilog implementation
- Hierarchical/modular synthesis process
- → Follows the call structure of the input
- Enhances modules reusability
- → Reduces final design complexity
- Exploits both Parallel and FSM controllers → FSM is preferred for serial kernels
- Exploits both local and external memories benchmarks
- → Local BRAMs on FPGAs
- → Shared memories
- Distributed/multi-ported memories



# **Experimental Evaluation**



# www.pnnl.gov