
High-level Synthesis of Memory Bound and Irregular Parallel
Applications with Bambu
Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi

PN
N

L-
SA

-1
04

18
2

 Experimental Evaluation

 Evaluation on a set of OpenMP benchmarks
 Up to six concurrent kernels

 Comparison (Performance/Area) against Bambu 0.9 and LegUP 3.0 (accelerators only)
 Target device: Altera Cyclone II
 Target frequency: 100 MHz
 Target memory architectures: single and 4-banked shared memories

Example Dependence Graph

Associated Parallel Controller Dynamic Behavior: Example of Execution Traces when
Varying Runtime Latencies

 Memory Interface Controllers

 Map unpredictable memory accesses to several memory ports
 Dynamic resolution of memory addresses → support for pointer arithmetics

 Manage concurrency
 lightweight arbiters associated with no

delay penalties

 Manage synchronization
 hardware implementation of atomic

memory operations

Bambu is freely available at
http://panda.dei.polimi.it/

Performance Evaluation

Area Evaluation

4 5 6 7 8
0

1

2

3

4

5

6

avg out:10, M=4
avg out:20, M=4
avg out:30, M=4
avg out:10, M=8
avg out:20, M=8
avg out:30, M=8

Kernels

S
pe

ed
-u

p

BFS case study: speed-ups varying number of
kernels/memory banks

High Performance Reconfigurable Computing

Application Domain
 Several emerging application are irregular

 Process large pointer-based data structures (graphs, trees, grids)
 Generate unpredictable memory accesses
 Memory bandwidth bound, high synchronization intensity
 Feature high degrees of (task-level) parallelism

 Examples: bioinformatics, knowledge discovery, data analytics

Hybrid Architectures
 CPUs + FPGA co-processors (e.g., Convey HC-x systems)
 Idea: execute performance critical kernel on dedicated hardware

components
 Promising for memory bound and irregular applications however...
 ... requires experienced designers for the implementation of the custom

hardware accelerators
 High development costs
 Long time for prototype for complex designs

High Level Synthesis (HLS)
 Allows the automatic implementation of a digital circuit, starting from its

behavioral description (C/C++ code)
 May fill the gap between development costs and benefits of hardware

acceleration (performance/power)

 Parallel Controller Architecture

 Set of communicating control elements (Execution Managers, EM)
 Each EM establishes when operations/tasks can start at runtime
 Dynamic execution paradigm

 Dedicated hardware for checking
 Satisfaction of dependency constraints
 Resource availability → interaction with arbiters (Resource Managers, RM)

 Linear complexity with respect to the number of operations/tasks
 Regardless of their latency

Proposed High-level Synthesis Flow
 Extends the Bambu framework

 Input: C-code specification
 Optionally annotated

 Output: Verilog implementation
 Hierarchical/modular synthesis process
 Follows the call structure of the input
 Enhances modules reusability
 Reduces final design complexity

 Exploits both Parallel and FSM controllers
 FSM is preferred for serial kernels

 Exploits both local and external memories benchmarks
 Local BRAMs on FPGAs
 Shared memories
 Distributed/multi-ported memories

Vito Giovanni Castellana, Antonino Tumeo
Pacific Northwest National Laboratory, HPC – Richland, WA, USA
vitogiovanni.castellana@pnnl.gov, antonino.tumeo@pnnl.gov

Fabrizio Ferrandi
Politecnico di Milano, DEIB – Milano, Italy
fabrizio.ferrandi@polimi.it

Main Limitations of Typical HLS Frameworks

Coarse-grained parallelism exploitation
 Most HLS approaches focus on Instruction-level Parallelism
 Limitations due to

 Input language semantics
 Architectural model (e.g., Finite State Machine with Datapath, FSMD)

 Both inherently serial

Support for complex memory subsystems
 Large amounts of data to process
 Memory operations may represent a bottleneck for performance
 Fundamental to support shared/distributed memories

 Higher memory availability/bandwidth

Proposed Solutions

Novel architectural model for HLS
 Exploit s a Parallel Controller for managing concurrent execution flows

Hardware modules for interfacing shared parallel memories
 Concurrency and synchronization management

 Modules automatically integrated in the final design

mailto:Antonino.tumeo@pnnl.gov
mailto:Antonino.tumeo@pnnl.gov

	Slide Number 1

