
High-level Synthesis of Memory Bound and Irregular Parallel
Applications with Bambu
Vito Giovanni Castellana, Antonino Tumeo, and Fabrizio Ferrandi

PN
N

L-
SA

-1
04

18
2

 Experimental Evaluation

 Evaluation on a set of OpenMP benchmarks
 Up to six concurrent kernels

 Comparison (Performance/Area) against Bambu 0.9 and LegUP 3.0 (accelerators only)
 Target device: Altera Cyclone II
 Target frequency: 100 MHz
 Target memory architectures: single and 4-banked shared memories

Example Dependence Graph

Associated Parallel Controller Dynamic Behavior: Example of Execution Traces when
Varying Runtime Latencies

 Memory Interface Controllers

 Map unpredictable memory accesses to several memory ports
 Dynamic resolution of memory addresses → support for pointer arithmetics

 Manage concurrency
 lightweight arbiters associated with no

delay penalties

 Manage synchronization
 hardware implementation of atomic

memory operations

Bambu is freely available at
http://panda.dei.polimi.it/

Performance Evaluation

Area Evaluation

4 5 6 7 8
0

1

2

3

4

5

6

avg out:10, M=4
avg out:20, M=4
avg out:30, M=4
avg out:10, M=8
avg out:20, M=8
avg out:30, M=8

Kernels

S
pe

ed
-u

p

BFS case study: speed-ups varying number of
kernels/memory banks

High Performance Reconfigurable Computing

Application Domain
 Several emerging application are irregular

 Process large pointer-based data structures (graphs, trees, grids)
 Generate unpredictable memory accesses
 Memory bandwidth bound, high synchronization intensity
 Feature high degrees of (task-level) parallelism

 Examples: bioinformatics, knowledge discovery, data analytics

Hybrid Architectures
 CPUs + FPGA co-processors (e.g., Convey HC-x systems)
 Idea: execute performance critical kernel on dedicated hardware

components
 Promising for memory bound and irregular applications however...
 ... requires experienced designers for the implementation of the custom

hardware accelerators
 High development costs
 Long time for prototype for complex designs

High Level Synthesis (HLS)
 Allows the automatic implementation of a digital circuit, starting from its

behavioral description (C/C++ code)
 May fill the gap between development costs and benefits of hardware

acceleration (performance/power)

 Parallel Controller Architecture

 Set of communicating control elements (Execution Managers, EM)
 Each EM establishes when operations/tasks can start at runtime
 Dynamic execution paradigm

 Dedicated hardware for checking
 Satisfaction of dependency constraints
 Resource availability → interaction with arbiters (Resource Managers, RM)

 Linear complexity with respect to the number of operations/tasks
 Regardless of their latency

Proposed High-level Synthesis Flow
 Extends the Bambu framework

 Input: C-code specification
 Optionally annotated

 Output: Verilog implementation
 Hierarchical/modular synthesis process
 Follows the call structure of the input
 Enhances modules reusability
 Reduces final design complexity

 Exploits both Parallel and FSM controllers
 FSM is preferred for serial kernels

 Exploits both local and external memories benchmarks
 Local BRAMs on FPGAs
 Shared memories
 Distributed/multi-ported memories

Vito Giovanni Castellana, Antonino Tumeo
Pacific Northwest National Laboratory, HPC – Richland, WA, USA
vitogiovanni.castellana@pnnl.gov, antonino.tumeo@pnnl.gov

Fabrizio Ferrandi
Politecnico di Milano, DEIB – Milano, Italy
fabrizio.ferrandi@polimi.it

Main Limitations of Typical HLS Frameworks

Coarse-grained parallelism exploitation
 Most HLS approaches focus on Instruction-level Parallelism
 Limitations due to

 Input language semantics
 Architectural model (e.g., Finite State Machine with Datapath, FSMD)

 Both inherently serial

Support for complex memory subsystems
 Large amounts of data to process
 Memory operations may represent a bottleneck for performance
 Fundamental to support shared/distributed memories

 Higher memory availability/bandwidth

Proposed Solutions

Novel architectural model for HLS
 Exploit s a Parallel Controller for managing concurrent execution flows

Hardware modules for interfacing shared parallel memories
 Concurrency and synchronization management

 Modules automatically integrated in the final design

mailto:Antonino.tumeo@pnnl.gov
mailto:Antonino.tumeo@pnnl.gov

	Slide Number 1

