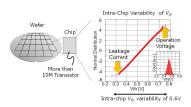

A Perpetuum Mobile 32bit CPU on 65nm SOTB CMOS Technology with Reverse-Body-Bias Assisted Sleep Mode

Shiro Kamohara¹, Nobuyuki Sugii¹, Koichiro Ishibashi², Kimiyoshi Usami³, Hideharu Amano⁴, Kazutoshi Kobayashi⁵, and Conq-Kha Pham²

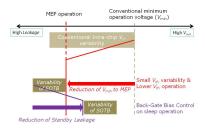
¹Low-power Electronics Association & Project (LEAP), Tsukuba, Japan, ²The University of Electro-Communications, Tokyo, Japan, ³Shibaura Institute of Technology, Tokyo, Japan, ⁴Keio University, Yokohama, Japan, ⁵Kyoto Institute of Technology, Kyoto, Japan


What is MEP (Minimum Energy Point) operation?

Any transistor should work under the condition; "lowest energy per operation"

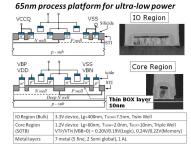
Big wall for MEP operation: Variability

Large Vth variability caused by RDF deteriorate the trade-off between V_{min} and standby leakage

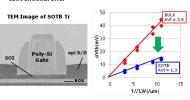


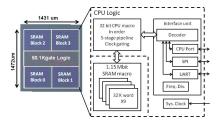
SOTB (Silicon On Thin Buried Oxide)

SOTB drastically relax the trade-off between V_{min} and the standby leakage by two mechanism

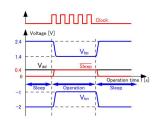

Mechanism of MEP operation via SOTB

Target of SOTB to realize IoT world

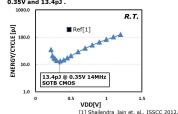

Our goal is the 1/10 X reduction of an active power and the standby current to realize IoT world



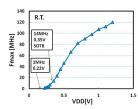
Extreme low V., variability by SOTB


Our 65nm SOTB core transistor shows the ectreme variability reduction of 1/3 in comparison with

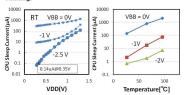
CPU Chip Photomicrograph and Structure


Control method of CPU test chip

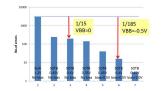
Energy per Cycle Value of CPU


SOTB enable our test chip of a MEP operation of

0.35V and 13.4pJ .


Maximum Operating Frequency of CPU

Even for a MEP operation, our test chip show \emph{F}_{max} of 14MHz and V_{min} is 0.22V.


CPU Sleep Current

Back bias control the standby leakage of more than 3 order and it makes the system a free for thermal

Reliability benefit for SOTB

Soft error immunity of FF for SOTB are less than 1FIT, while those for Bulk are more than 100FIT.

CONCLUSIONS

- · Perpetuum computing 32bit CPU is demonstrated with 65nm SOTB and back bias technology.
- · 13.4 pJ/cycle operating minimum energy, 0.14µA sleep current is attained.
- · The CPU operates eternally with ambient light indoor.

Acknowledgments

This work is supported by New Energy and Industrial Technology Development Organization and Ministry of Economy, Trade, and Industry of Japan.

Staffs of Renesas Electronics Corporation for chip fabrication

Universities and national institute for electrical characterization of devices, circuit design, and silicon verification:

Keio University

Kyoto Institute of Technology

Kvoto University Osaka University

Shibaura Institute of Technology

The National Institute of Advanced Industrial Science and

Technology (AIST)

The University of Electro-Communications

The University of Tokyo Tokyo University of Science