

RayChip[®]: Real-time Ray-tracing Chip for Embedded Applications

Woo-Chan Park^{1,2}, **Hee-Jin Shin**¹, Byoungok Lee¹, Hyungmin Yoon¹, and Tack-Don Han^{1,3} ¹**Siliconarts, Inc.**, ²Sejong University, ³Yonsei University

heejinshin@siliconarts.com

Copyright 2014 Siliconarts, Inc. All rights reserved

- Introduction
- Ray-tracing Algorithm
- RayChip[®] Series 1000
- RayCore[®] and RayTree[®]
- Performance
- Summary
- Future Plan
- Q&A

Introduction

- Ray-tracing is a classic global illumination algorithm for photo-realistic rendering, however, it requires tremendous computing power to create high-quality images
- RayChip[®] is the world's first commercialized chip targeted to realize real-time ray tracing for embedded applications
- This chip provides sufficient performance for real-time ray tracing, a diverse set of graphics functionalities, and easy-to-use RayCore[®] API

* Movie-quality graphics

SILICONARTS

Ray-tracing Algorithm – Fundamental

 Ray-tracing generates an image by tracing the path of light through pixels in an image plane and simulating the effects of its encounters with virtual object

<Ray-tracing Algorithm>

Advantages of Ray-tracing algorithm [1]

- Supporting global illumination effects such as reflection, refraction, shadow, transmission
- Less computational complexity in object numbers (e.g., O (log N))
- On-demand computation
- Declarative scene description
- Parallel (as nature)
- Disadvantages of Ray-tracing algorithm [1]
 - Tremendous computation (e.g., traversal and intersection process)
 - Problem in supporting fully dynamic scene (e.g., O(N log N))
 - Difficult to map ray-tracing algorithm in streaming framework
 - High memory bandwidth

* [1] Jim Hurley, "Ray Tracing Goes Mainstream," Intel Technology Journal, Vol. 9, pp. 98-107, 2005.

Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014

Ray-tracing Algorithm – Ray-tracing VS. Rasterization

Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014

Ray-tracing Algorithm – Advantages of Ray-tracing

- Easy to create
 - Simulates effects of light automatically: natural shadow, reflection, refraction, and transmission of lights (Reduced workload to develop light-related artifacts)
 - Even novice designer is able to develop 3D graphic contents without much difficulty
- Cost-effective
 - Tremendously reduced cost to develop 3D graphic contents
 - Spread out of reality-like 3D graphics UI and applications

3D graphics model data is developed by a graphic designer using SW authoring tools such as 3ds Max or Maya

SILICON**A**RTS

RayChip[®] Series 1000

- The world's first real-time ray-tracing chip for embedded applications
 - Full hard-wired logic to achieve real-time performance for ray-tracing rendering
 - Processes multiple ray bounces recursively to create realistic images
 - Maintains high throughput pipeline by adopting MIMD parallel architecture to trace individual rays
 - Scalable architecture based on tile scheduling
- High performance acceleration structure(AS)-building HW of dynamic scenes
 - Real-time ray tracing requires per frame AS building in dynamic scenes
 - RayTree[®], an AS-building HW satisfies the following challenging goals:
 - Fast kd-tree build while maintaining high tree quality
 - Minimized memory access
 - Exploitation of burst memory access
- Easy-to-use OpenGL ES-familiar API support
 - Provides a diverse set of graphics functionalities and an OpenGL ES 1.1familiar API
 - Allows developers to create high-quality 3D graphics applications at lower cost

RayChip® Series 1000 – Overview

- RayChip[®] includes 6 cores of RayCore[®] IP and 1 core of RayTree[®] IP to provide high performance ray-tracing rendering up to HD resolution, 60fps
- ARM11 CPU, HDMI1.3x, USB2.0, and other peripherals are added

<RayChip® SF141F Block Diagram>

<RayChip® SF141F Floorplan>

RayChip[®] Series 1000 – Specifications

Item	Description		
Part No.	SG141F		
Technology	Fujitsu 55nm low-power technology		
Die area	$9.6\times9.4\ mm^2$		
Package	17×17 mm, 400 FBGA		
Voltage	Core 1.2V, I/O 1.8V, 3.3V		
Key Components	RayCore [®] RayTree [®]		
	ARM1176JZF-S		
	DDR-3, USB 2.0, HDMI 1.3, SDIO, 2D Engine, System Bus (AXI), Peripherals		
RayCore®	Six-core real-time ray-tracing GPU 30M gate counts 0.85 W/core, Max. clock 266 MHz Performance: 100M rays/s (MRPS), 60FPS		
RayTree®	One scan-tree unit / two <i>kd</i> -tree units 3.5M gate counts, Max. clock 266MHz Performance: 1M triangles/s		

RayChip[®] Series 1000 – Process Flow

RayChip® Series 1000 – Process Flow

- Tile scheduling: each RayCore[®] renders a tiled image one at a time
 - RayCore#1 renders tiled image#1, RayCore#2 renders tiled image#2, and so on
- Process order may change due to delay in certain RayCore[®] rendering
 - RayCore#2 takes over RayCore#1's task (e.g., tiled image#7) to efficiently process ray-tracing

RayChip® Series 1000 – RayCore® API

- Easy-to-use API for ray-tracing content development
 - Supports interface to develop ray-tracing 3D contents
 - Consists of API libraries similar to OpenGL ES 1.1 with ray-tracing specific functions
- Complete API specifications and ray-tracing programming guide are available on Siliconarts' website (www.siliconarts.com)

<RayCore® API Library>

SILICONARTS

<RayCore® API Flow Chart>

- Content-rich applications in TV/STB, digital signage and dongle mini PC
 Stand along rout traging appliing douting
 - Stand-alone ray-tracing enabling device

RayCore[®] and RayTree[®]

- Fixed-pipeline architecture
 - Fully-hardwired pipeline approach for high area and power efficiency
 - GPU in modern mobile and embedded AP can be combined for shader programming
- MIMD vs. SIMD
 - MIMD architecture allows higher HW utilization regardless of ray coherence
- Unified Traversal & Intersection ('T&I') units vs. separate T&I units
 - Unified T&I units perform T&I operations in a single pipeline
 - Load imbalance problem eliminated in prior separate T&I units
- "Looping for the next chance": Efficient memory latency hide technique
 - Effectively provides HW multi-threading to hide memory latency due to cache misses
- Acceleration structure ('AS') build unit
 - kd-tree AS produces faster traversal and better cache efficiency
 - Dedicated *kd*-tree build HW makes it possible to meet long tree-build time

RayCore[®] – RayCore[®] Architecture

Setup-processing unit

Passes ray information to ray-generation

- Ray-generation unit
 - Primary/secondary ray generation
- T&I units
 - Node traversals
 - Ray-triangle intersection test
- Hit-point calculation unit
 - Calculate the position (x,y,z) of the hit point
- Shading unit
 - Phong illumination
 - Texture mapping
 - Inverse displacement mapping

- MIMD architecture is more efficient in implementing real-time ray tracing
 - MIMD has six to ten times higher performance than SIMD in a similar die area [2]

<Unified T&I Pipeline>

Category	SIMD	MIMD
Pros	Memory bandwidth reduction	Ideally perfect utilization
Cons	_ow utilization rate in case of incoherent rays	Expensive HW cost
Performance	Good only in the case of coherent rays	Best (with L2 cache)

<MIMD vs. SIMD Pros and Cons>

TABLE '

COMPARING OUR PERFORMANCE ON TWO DIFFERENT CORE CONFIGURATIONS TO THE GTX285 FOR THREE BENCHMARK SCENES [11]. PRIMARY RAY TESTS CONSISTED OF 1 PRIMARY AND 1 SHADOW RAY PER PIXEL. DIFFUSE RAY TESTS CONSISTED OF 1 PRIMARY AND 32 SECONDARY GLOBAL ILLUMINATION RAYS PER PIXEL.

MD MIMD Rate MRPS % 376 % 286 % 387 % 355	MIMD Issue Ra 70% 57% 73% 73% 70%	MIMD MRPS 369 330 421 402	MIMD Issue Rate 76% 37% 79%	MIMD MRPS 274 107 285
% 376 % 286 % 387 % 355	70% 57% 73% 70%	369 330 421	76% 37% 79%	274 107 285
% 387 % 355	73% 70%	421	79%	285
		402	46%	131
X GTX D eff. MRPS	GTX SIMD ef	GTX ff. MRPS	GTX SIMD eff.	GTX MRPS
% 142 % 61	76% 46%	75 41	77% 49%	117 47
	A GTA 0 eff. MRPS % 142 % 61 rom 2.56 (Confere om 0.25 (Confere	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A GTA GTA GTA GTA 0 eff. MRPS SIMD eff. MRPS % 142 76% 75 % 61 46% 41 rom 2.56 (Conference, primary rays) to 0.73 (5 0.07 (F om 0.25 (Conference, primary rays) to 0.07 (F	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

<MIMD vs. SIMD Performance Comparison>

* [2] D. Kopta, et al., "Efficient MIMD Architectures for High-Performance Ray Tracing," *IEEE International Conference on Computer Design*, pp. 9-16, Oct. 2010.

RayCore[®] – Memory Hierarchy

- "Looping for the next chance" scheme
 - Simple multi-threading for easy HW implementation and efficient hiding of memory latency
 - Cache miss triggers the ray thread that is set to idle mode
 - Ray thread is set to active mode at the next loop to re-access the cache; a cache miss acts as pre-fetching data for the next loop
- Two-level cache hierarchy
 - L1/L2 caches
 - L1/L2 Address FIFO for handling memory requests
 - L1/L2 Address/Data FIFO for delivering address & data to the upper-level cache

<L1/L2 Memory Hierarchy>

RayTree[®] – RayTree[®] Architecture

- Fast *kd*-tree building without tree-quality degradation
 - Binning method [3] for making upper-level nodes, called scan-tree
 - Sorting method [4] for making lower-level nodes, called kd-tree
- Minimized off-chip memory access
 - Internal SRAM in the sorting-based pipeline for sorting, split plane selection, and geometry classification without external DRAM accesses

 Reallocates a node construction sequence as the depth-first layout in node scheduler

* [3] M. Shevtsov, A. Soupikov, and A. Kapustin, "Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes," Computer Graphics Forum, Vol. 26, No. 3, pp. 395-404, Sept. 2007.

* [4] I. Wald and V. Havran, "On Building Fast kd-trees for Ray Tracing, and on Doing That in O(N log N)," IEEE Symposium on Interactive Ray Tracing, pp. 61-69, 2006.

BUS

<RayTree[®] Architecture>

Performance

Performance – Test Bench for Ray-tracing Performance

<Cup>

<Kitchen>

<Living room>

<Orgel>

<Watch>

<Waterdrop UI>

Siliconarts RayChip[®] Presentation, Aug. 12, 2014 @ Hot Chips 2014

- Ray-tracing performance:
 - 100M rays/s (MRPS), 45FPS@720p resolution

[unit: MRPS; FPS]

Test scene	No. of primitives	Display resolution	Graphic effects	FPS
Cup	5,356	HD (720p)	Ray-tracing effects*	45.70
Kitchen	189,202	HD (720p)	Ray-tracing effects*	14.26
Lake	9,195	HD (720p)	Ray-tracing effects*	23.56
Living room	287,213	HD (720p)	Ray-tracing effects*	16.07
Mobil	164,430	HD (720p)	Ray-tracing effects*	10.39
Orgel	6,338	HD (720p)	Ray-tracing effects*	18.48
Pebble UI	61,678	HD (720p)	Ray-tracing effects*	20.79
Watch	10,048	HD (720p)	Ray-tracing effects*	13.38
Waterdrop UI	20,982	HD (720p)	Ray-tracing effects*	17.81
	Average			20.05

* Ray-tracing effects : Reflection, refraction, transmission, shadow; all in real-time

Performance – Test Bench for Accel. Structure Building Performance

<Church>

<Kitchen>

<Vegetable_lens>

<Flight_simulation>

<Lake>

<Vegetable_dynamic> Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014 <Mobil>

Performance – Acceleration Structure Building Performance

- Acceleration Structure building performance for dynamic scenes:
 - 1M triangles/sec

[unit: ms]

Test scene	No. of primitives	Desktop PC*	Mobile AP**	RayTree [®] ***
Church	972	2.0074	23.8047	0.6475
Kitchen	1,079	3.0599	38.1295	0.6266
Watch	1,938	5.9568	74.2274	1.2198
Vegetable_lens	2,720	7.7652	86.2227	1.6932
Lake	6,903	22.0243	244.5517	4.8024
Mobil	7,208	25.5788	242.6982	3.3539
Flight_simulation	10,856	35.1052	271.5869	7.6767
Vegetable_dynamic	30,762	51.6724	457.9666	19.5148

* Desktop PC: Intel i3-2120@3.3GHz, using single thread

** Mobile AP: ARM Cortex A15@1.7GHz, using single thread

*** RayTree®: one scan-tree unit and two kd-tree units@266MHz

- Lake:
 - Number of primitives: 9,195
 - Number of light sources: 2
 - Number of ray bounces: 0~14
- Ray-tracing effects:
 - Reflection on dynamic lake surface, transmission on boat sail, simultaneous changes in reflection on lake surface due to change in background image

<Ray bounce of 0>

<Ray bounce of 14>

Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014

Performance – Real-time Ray-tracing Demo

- Living room:
 - Number of primitives: 287,213
 - Number of light sources: 2
 - Number of ray bounces: 0~14
- Ray-tracing effects:
 - Transmission on table, refraction on red cup, global shadow of each object, bump mapping on book on footstool

<Ray bounce of 0>

SILICONARTS

Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014

<Ray bounce of 14>

Performance – Real-time Ray-tracing Demo

- Waterdrop UI:
 - Number of primitives: 20,949
 - Number of light sources: 2
 - Number of ray bounces: 0~14
- Ray-tracing effects:
 - Refraction on dynamic waterdrop folders, simultaneous changes in refraction on waterdrop folders due to change in user-customized background image

<Ray bounce of 0>

<Ray bounce of 14>

Siliconarts RayChip® Presentation, Aug. 12, 2014 @ Hot Chips 2014

- Mobil:
 - Number of primitives: 194,430
 - Number of light sources: 3
 - Number of ray bounces: 0~14
- Ray-tracing effect:
 - Reflection on window and water surface on bowl, transmission on transparent table, global shadow on every object, simultaneous changes in global shadow due to moving light source

<Ray bounce of 14>

Summary

- RayChip[®] is the world's first commercialized chip targeted to realize real-time ray tracing for embedded applications such as TV, media box and game console
- RayChip[®] includes real-time ray-tracing HW unit, called RayCore[®], and acceleration structure building HW unit, called RayTree[®]
- RayCore[®] has fully hardwired, pipelined architecture
 - MIMD processing of ray threads
 - Scalable architecture based on tile scheduling
 - Pipeline efficiency improvement using "looping for the next chance" scheme
- RayTree[®] is fully hardwired acceleration structure building unit
 - Parallel hybrid tree building architecture
 - One scan-tree unit & two kd-tree units
- RayCore[®] API allows easy-to-use programming environment for ray-tracing

Future Plan

- Virtual Reality ('VR') Platform
 - Ray-tracing and sound-tracing technologies are combined to provide more immersive VR experience
 - Sound-tracing HW IP based on ray-tracing will be released in the near future
- RayChip[®] Series 2000 Chip
 - Advanced graphics functions such as soft shadow, ambient occlusion, displacement mapping, etc. are to be added
 - Ray-tracing GPU and OpenGL ES 2.0/3.0 GPU is integrated to seamlessly deliver maximum graphic effects and to support existing 3D graphic contents
- Real-time Global Illumination ('GI')
 - Real-time GI, a photorealistic graphic algorithm, which contains indirect illumination model will be implemented based on path-tracing algorithm and noise filter techniques

