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Introduction of Baidu  

• A dominant Internet company in China 
– ~US$80 Billion market value 

– 600M+ users 

– Exploiting internet markets of Brazil, Southeast Asia and Middle east Asia 

 

• Main Services 
– PC search and mobile search 

• 70%+ market share  in China 

– LBS( local base service) 
• 50%+ market share 

– On-line trips 
• QUNR[subsidiary company], US$3 billions market value  

– Video, 
• Top 1 mobile video in China 

– Personal cloud storage 
• 100M+ users, the largest in China 

– APPs store, image and speech 

 

• Baidu is a technology-driven company 
– Tens of data centers, hundreds of thousands of servers 

– Over one thousand PetaByte data (LOG, UGC, Webpages, etc.) 
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DNN in Baidu  

• DNN has been deployed to accelerate many critical services at 
Baidu 
– Speech recognition  

• Reduce 25%+ error ratio compared to the GMM (Gaussian Mixture Model) method  

– Image 

• Image search, OCR, face recognition 

– Ads 

– Web page search 

– LBS/NLP(Natural Language Processing) 

 

• What is DNN ( deep neural network or deep learning) 
– DNN is a multi-layer neural network. 

– DNN uses usually an unsupervised and unfeatured machine learning method. 
• Regression and classification  

• Pattern recognition, function fitting or more  

– Often better than shallow learning (SVM(Support Vector Machine), Logistics Regression, etc.) 
• Unlabeled features 

• Stronger representation ability  

– Often demands more compute power 
• Need to train much more parameters 

• Need to leverage big training data to achieve better results 
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Outline  

• Overview of the DNN algorithm and system 

 

• Challenges on building large-scale DNN system 

 

• Our solution: SDA (Software-Defined Accelerator) 

– Design goals  

– Design and implementation 

– Performance evaluation  

 

• Conclusions  
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Overview of DNN algorithm  

• Single neuron structure  

 

 

 

 

• Multiple neurons and layers 

 

 

 

 

 

 

 

 

 

For each input vector 

// forward , for input layer to output layer 

 O_i=f(W_i * O_i-1) 

// backward, for output layer to input layer 

 delta_i = O_i+1 * (1-O_i) * (W_i * delta_i+1) 

 //update weight ,for input layer to output layer 

 W_i = W_i + n* delta_i*O_i-1 

Almost matrix multiplications and additions  

Complexity is O(3*E*S*L*N3)  

E: epoch number; S: size of data set; L: layers number; N: 

size of weight 

Online-prediction Complexity: O(V*L*N2)  

V : input vector number 

L: layer number 

N: size of weight matrix 

 

N=2048,L=8,V=16 for typical applications, computation of 

each input vector is ~1GOP,  and almost  consumes 33ms in 

latest X86 CPU core. 

 

• Back-propagation training 

 

 

 

 

 

• Online-prediction  

– Only forward stage 

 

 

 

fig1 

fig2 
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Overview of DNN system  

• Scale   
– 10~100TB training data 

– 10M~100B parameters 
 

• workload type 
– Compute intensive 

– Communication intensive 

– Difficult to scale out 
 

• Cluster type 
– Medium size (~100) 

– GPU and IB 

 

 

• Scale 
– 10M~B users 

– 100M~10B requests/day 

 

• Workload type 
– Compute intensive 

– Less communication 

– Easy to scale out 

 

• Cluster type 
– Large scale(K~10K) 

– CPU (AVX/SSE) and 10GE 

 

Off-line training On-line prediction 

Models 

5% 
5% 

Large-scale DNN training system 

Training 
data 

parameters 
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Challenges on Existing Large-scale DNN system   

• DNN training system 

– Scale: ~100 servers due to algorithm and hardware limitations  

– Speed: training time from days to months  

– Cost: many machines demanded by a large number of applications 
 

• DNN prediction 
– Cost: 1K~10K servers for one service 

– Speed: latency of seconds for large models 
 

• Cost and speed are critical for both training and prediction 
– GPU 

• High cost 

• High power and high space consumption 

• Higher demand on data center cooling, power supply, and space utilization 
– CPU 

• Medium cost and power consumption 

• Low speed 
 

• Are any other solutions?  
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Challenges of large DNN system  

• Other solutions  

– ASIC 

• High NRE 

• Long design period, not suitable for fast iteration in Internet companies 

 

– FPGA 

• Low power 

– Less than 40W 

• Low cost 
– Hundreds of dollars 

• Hardware reconfigurable  

 

• Is FPGA suitable for DNN system ? 
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Challenges of large DNN system  

• FPGA’s challenges 

– Developing time 

• Internet applications need very fast iteration 

– Floating point ALU  

• Training and some predictions require floating point   

– Memory bandwidth 

• Lower than GPU and CPU 

 

• Our Approach 

– SDA: Software-Defined Accelerator 
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SDA Design Goals 

• Supports major workloads 
– Floating point: training and prediction  

 

• Acceptable performance  
– 400Gflops, higher than 16core x86 server 

 

• Low cost 
– Medium-end FPGA 

 

• Not require changes of existent data center environments  
– Low power: less than 30w of total power 

– Half-height, half-length, and one slot thickness 
 

• Support fast iteration 
– Software-Defined 
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Designs and implementations  

• Hardware board design 

• Architecture  

• Hardware and software interface 
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Design – Hardware Board 

• Specifications  
– Xilinx K7 480t 

– 2 DDR3 channels, 4GB  

– PCIE 2.0x8 

 

• Size 

– Half-height, half-length and one slot thickness 

– Can be plugged into any types of 2U and 1U servers. 

 

• Power 

– Supplied by the PCIE slot 

– Peak power of board less than 30w 
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Design  -  Architecture 

• Major functions  
– Floating point matrix multiplication 

– Floating point active functions  

 

• Challenges of matrix multiplications  

– The numbers of floating point MUL and ADD 

– Data locality 

– Scalability for FPGAs of different sizes 

 

• Challenges of active functions 

– Tens of different active functions 

– Reconfigurable on-line within milliseconds  
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Design  - Architecture 

• Customized FP MUL and ADD 

–  About 50% resource reduction compared to standard IPs 

 

• Leverage BRAM for data locality 

– Buffer 2x512x512 tile of matrix 

 

• Scalable ALU 

– Each for a 32x32 tile 
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Design  - architecture 

• Software-defined active functions  

– Support tens of active functions: sigmod, tanh, softsign… 

– Implemented by lookup table and linear fitting 

– Reconfigure the table by user-space API 

 

• Evaluations 

– 1-e5 ~1-e6 precision 

– Can be reconfigured within 10us 
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Design  - Software/hardware Interface 

• Computation APIs 

– Similar to CUBLAS 

– Memory copy: host to device and device to host 

– Matrix MUL 

– Matrix MUL with active function 

 

• Reconfiguration API 

– Reconfigure active functions 
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Evaluations  

• Setup 

 
– HOST 

• Intel E5620v2x2, 2.4GHz, 16 cores 

• 128GB memory 

• 2.6.32 Linux Kernel, MKL 11.0 

 

–  SDA 
• Xilinx K7-480t 

• 2x2GB DDR3 on-board memory, with ECC, 72bit, 1066MHz 

• PCIE 2.0x8 

 

– GPU 
• One type  server-class GPU 

• Two independent devices. The following evaluation leverages one 
device. 
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Evaluations-Micro Benchmark   

• SDA implementation  

– 300MHz, 640 ADDs and 640 MULs 

 

 

• Peak performance 

– Matrix multiplication : MxNxK=2048x2048x2048 

 

 

 

 

 

• power 

 

 

LUT DSP REG BRAM 

Resource utilization 70% 100% 37% 75% 

0

200

400

600

800

1000

1200

server FPGA GPU

GFLOPS

CPU FPGA GPU 

Gflops/W 4 12.6 8.5 



19 

Evaluations-Micro Benchmark   

• M=N=K, matrix multiplication 

– CPU leverages one core, GPU is one device 

– M=512,1024 and 2048 
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Evaluations: On-line Prediction Workload  

• Input batch size is small 
– Batch size: the number of input vector 

– Typical batch size is 8 or 16 

 

• Typical layer is 8 

 

• The size of hidden layer is several hundreds to several thousands 
– Depending on applications, practical tuning and training time 

 

• Workload1 
– Batch size=8, layer=8, hidden layer size=512 

– Thread number is 1~64, test the request/s 

 

• Workload2 
– Batch size=8, layer=8, hidden layer size=2048 

– Thread number is 1~32, test the request/s 
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Evaluations: On-line Prediction Workload   

• Batch size=8, layer=8 

 

• Workload1 
– Weight matrix size=512 

– FPGA is 4.1x than GPU 

– FPGA is 3x than CPU 

 

 Workload2 
– Weight matrix size=2048 

– FPGA is 2.5x than GPU 

– FPGA is 3.5x than CPU 

 

• Conclusions  
– FPGA can merge the  

small requests to improve  

performance 

–  Throughput in Req/s of FPGA scales 
better 
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The features of SDA 

• Software-defined 
– Reconfigure active functions by user-space API 

– Support very fast iteration of internet services 

• Combine small requests to big one 
– Improve the QPS while batch size is small 

– The batch size of real workload is small 

• CUBLAS-compatible APIs 
– Easy to use 
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Conclusions  

• SDA: Software-Defined Accelerator 

– Reconfigure active functions by user-space APIs 

– Provide higher performance in the DNN prediction system than 

GPU and CPU server 

– Leverage mid-end FPGA to achieve  about  380Gflops 

– 10~20w power in real production system 

– Can be deployed in any types of servers 

– Demonstrate that FPGA is a good choice for large-scale DNN 

systems  

 

 

 

 

 

 

 


