
Jian Ouyang,1 Shiding Lin,1 Wei Qi, 1 Yong Wang, 1 Bo Yu, 1

Song Jiang,2

1Baidu, Inc. 2Wayne State University

SDA: Software-Defined Accelerator for Large-

Scale DNN Systems

2

Introduction of Baidu

• A dominant Internet company in China
– ~US$80 Billion market value

– 600M+ users

– Exploiting internet markets of Brazil, Southeast Asia and Middle east Asia

• Main Services
– PC search and mobile search

• 70%+ market share in China

– LBS(local base service)
• 50%+ market share

– On-line trips
• QUNR[subsidiary company], US$3 billions market value

– Video,
• Top 1 mobile video in China

– Personal cloud storage
• 100M+ users, the largest in China

– APPs store, image and speech

• Baidu is a technology-driven company
– Tens of data centers, hundreds of thousands of servers

– Over one thousand PetaByte data (LOG, UGC, Webpages, etc.)

3

DNN in Baidu

• DNN has been deployed to accelerate many critical services at
Baidu
– Speech recognition

• Reduce 25%+ error ratio compared to the GMM (Gaussian Mixture Model) method

– Image

• Image search, OCR, face recognition

– Ads

– Web page search

– LBS/NLP(Natural Language Processing)

• What is DNN (deep neural network or deep learning)
– DNN is a multi-layer neural network.

– DNN uses usually an unsupervised and unfeatured machine learning method.
• Regression and classification

• Pattern recognition, function fitting or more

– Often better than shallow learning (SVM(Support Vector Machine), Logistics Regression, etc.)
• Unlabeled features

• Stronger representation ability

– Often demands more compute power
• Need to train much more parameters

• Need to leverage big training data to achieve better results

4

Outline

• Overview of the DNN algorithm and system

• Challenges on building large-scale DNN system

• Our solution: SDA (Software-Defined Accelerator)

– Design goals

– Design and implementation

– Performance evaluation

• Conclusions

5

Overview of DNN algorithm

• Single neuron structure

• Multiple neurons and layers

For each input vector

// forward , for input layer to output layer

 O_i=f(W_i * O_i-1)

// backward, for output layer to input layer

 delta_i = O_i+1 * (1-O_i) * (W_i * delta_i+1)

 //update weight ,for input layer to output layer

 W_i = W_i + n* delta_i*O_i-1

Almost matrix multiplications and additions

Complexity is O(3*E*S*L*N3)

E: epoch number; S: size of data set; L: layers number; N:

size of weight

Online-prediction Complexity: O(V*L*N2)

V : input vector number

L: layer number

N: size of weight matrix

N=2048,L=8,V=16 for typical applications, computation of

each input vector is ~1GOP, and almost consumes 33ms in

latest X86 CPU core.

• Back-propagation training

• Online-prediction

– Only forward stage

fig1

fig2

6

Overview of DNN system

• Scale
– 10~100TB training data

– 10M~100B parameters

• workload type
– Compute intensive

– Communication intensive

– Difficult to scale out

• Cluster type
– Medium size (~100)

– GPU and IB

• Scale
– 10M~B users

– 100M~10B requests/day

• Workload type
– Compute intensive

– Less communication

– Easy to scale out

• Cluster type
– Large scale(K~10K)

– CPU (AVX/SSE) and 10GE

Off-line training On-line prediction

Models

5%
5%

Large-scale DNN training system

Training
data

parameters

7

Challenges on Existing Large-scale DNN system

• DNN training system

– Scale: ~100 servers due to algorithm and hardware limitations

– Speed: training time from days to months

– Cost: many machines demanded by a large number of applications

• DNN prediction
– Cost: 1K~10K servers for one service

– Speed: latency of seconds for large models

• Cost and speed are critical for both training and prediction
– GPU

• High cost

• High power and high space consumption

• Higher demand on data center cooling, power supply, and space utilization
– CPU

• Medium cost and power consumption

• Low speed

• Are any other solutions?

8

Challenges of large DNN system

• Other solutions

– ASIC

• High NRE

• Long design period, not suitable for fast iteration in Internet companies

– FPGA

• Low power

– Less than 40W

• Low cost
– Hundreds of dollars

• Hardware reconfigurable

• Is FPGA suitable for DNN system ?

9

Challenges of large DNN system

• FPGA’s challenges

– Developing time

• Internet applications need very fast iteration

– Floating point ALU

• Training and some predictions require floating point

– Memory bandwidth

• Lower than GPU and CPU

• Our Approach

– SDA: Software-Defined Accelerator

10

SDA Design Goals

• Supports major workloads
– Floating point: training and prediction

• Acceptable performance
– 400Gflops, higher than 16core x86 server

• Low cost
– Medium-end FPGA

• Not require changes of existent data center environments
– Low power: less than 30w of total power

– Half-height, half-length, and one slot thickness

• Support fast iteration
– Software-Defined

11

Designs and implementations

• Hardware board design

• Architecture

• Hardware and software interface

12

Design – Hardware Board

• Specifications
– Xilinx K7 480t

– 2 DDR3 channels, 4GB

– PCIE 2.0x8

• Size

– Half-height, half-length and one slot thickness

– Can be plugged into any types of 2U and 1U servers.

• Power

– Supplied by the PCIE slot

– Peak power of board less than 30w

13

Design - Architecture

• Major functions
– Floating point matrix multiplication

– Floating point active functions

• Challenges of matrix multiplications

– The numbers of floating point MUL and ADD

– Data locality

– Scalability for FPGAs of different sizes

• Challenges of active functions

– Tens of different active functions

– Reconfigurable on-line within milliseconds

14

Design - Architecture

• Customized FP MUL and ADD

– About 50% resource reduction compared to standard IPs

• Leverage BRAM for data locality

– Buffer 2x512x512 tile of matrix

• Scalable ALU

– Each for a 32x32 tile

15

Design - architecture

• Software-defined active functions

– Support tens of active functions: sigmod, tanh, softsign…

– Implemented by lookup table and linear fitting

– Reconfigure the table by user-space API

• Evaluations

– 1-e5 ~1-e6 precision

– Can be reconfigured within 10us

16

Design - Software/hardware Interface

• Computation APIs

– Similar to CUBLAS

– Memory copy: host to device and device to host

– Matrix MUL

– Matrix MUL with active function

• Reconfiguration API

– Reconfigure active functions

17

Evaluations

• Setup

– HOST

• Intel E5620v2x2, 2.4GHz, 16 cores

• 128GB memory

• 2.6.32 Linux Kernel, MKL 11.0

– SDA
• Xilinx K7-480t

• 2x2GB DDR3 on-board memory, with ECC, 72bit, 1066MHz

• PCIE 2.0x8

– GPU
• One type server-class GPU

• Two independent devices. The following evaluation leverages one
device.

18

Evaluations-Micro Benchmark

• SDA implementation

– 300MHz, 640 ADDs and 640 MULs

• Peak performance

– Matrix multiplication : MxNxK=2048x2048x2048

• power

LUT DSP REG BRAM

Resource utilization 70% 100% 37% 75%

0

200

400

600

800

1000

1200

server FPGA GPU

GFLOPS

CPU FPGA GPU

Gflops/W 4 12.6 8.5

19

Evaluations-Micro Benchmark

• M=N=K, matrix multiplication

– CPU leverages one core, GPU is one device

– M=512,1024 and 2048

0

200

400

600

800

1000

1200

512 1024 2048

CPU

GPU

FPGA

Gfops

Matrix size

20

Evaluations: On-line Prediction Workload

• Input batch size is small
– Batch size: the number of input vector

– Typical batch size is 8 or 16

• Typical layer is 8

• The size of hidden layer is several hundreds to several thousands
– Depending on applications, practical tuning and training time

• Workload1
– Batch size=8, layer=8, hidden layer size=512

– Thread number is 1~64, test the request/s

• Workload2
– Batch size=8, layer=8, hidden layer size=2048

– Thread number is 1~32, test the request/s

21

Evaluations: On-line Prediction Workload

• Batch size=8, layer=8

• Workload1
– Weight matrix size=512

– FPGA is 4.1x than GPU

– FPGA is 3x than CPU

 Workload2
– Weight matrix size=2048

– FPGA is 2.5x than GPU

– FPGA is 3.5x than CPU

• Conclusions
– FPGA can merge the

small requests to improve

performance

– Throughput in Req/s of FPGA scales
better

0

100

200

300

400

500

600

700

1 2 4 8 12 16 24 32

CPU

GPU

FPGA

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 12 16 24 32 40 48 56 64

CPU

GPU

FPGA

Thread #

Thread #

Req/s

Req/s

Fig a:workload1

Fig b: workload2

4.1x
3x

2.5x
3.5x

22

The features of SDA

• Software-defined
– Reconfigure active functions by user-space API

– Support very fast iteration of internet services

• Combine small requests to big one
– Improve the QPS while batch size is small

– The batch size of real workload is small

• CUBLAS-compatible APIs
– Easy to use

23

Conclusions

• SDA: Software-Defined Accelerator

– Reconfigure active functions by user-space APIs

– Provide higher performance in the DNN prediction system than

GPU and CPU server

– Leverage mid-end FPGA to achieve about 380Gflops

– 10~20w power in real production system

– Can be deployed in any types of servers

– Demonstrate that FPGA is a good choice for large-scale DNN

systems

