D E Shaw Research

20

C20

12

63

The $\wedge N T O N 2$ Chip

24

2

283

A Second-Generation ASIC for Molecular Dynamics

63-00004-01 ECRS600282A-1R P6N592.00 1343 KOREA (e1)

660

The Hardware Team: All 2⁵ of Us

J. Adam Butts, Brannon Batson, Jack C. Chao*, Martin M. Deneroff*, Ron O. Dror*, Christopher H. Fenton, Anthony Forte, Joseph Gagliardo, Gennette Gill, Brian Greskamp, J.P. Grossman, C. Richard Ho*, Jeffrey S. Kuskin, Richard H. Larson*, Timothy Layman*, Li-Siang Lee*, Chester Li*, Shark Yeuk-Hai Mok*, Mark A. Moraes, Rolf Mueller*, Lawrence J. Nociolo, Jon L. Peticolas, Terry Quan, Daniel Ramot*, Naseer Siddique, Jochen Spengler, Ping Tak Peter Tang*, Michael Theobald, Horia Toma*, Brian Towles, Stanley C. Wang, and David E. Shaw

* Work conducted while at D. E. Shaw Research; author's affiliation has subsequently changed.

Molecular Dynamics (MD) and Why It's Hard

- Simulation of the motions of all atoms in a *biochemical system*
 - Calculate all forces on each atom of the system in each discrete time step
 - Each simulation time step is ~2 fs
- Efficient parallelization of force calculation is hard
 - Time steps are sequentially dependent
 - All atoms interact with all other atoms
- Massive computational task!
 - Many interesting biochemical systems have 10^{5 –} 10⁶ atoms
 - Many biological processes take milliseconds (i.e., 10¹² time steps)
 - ~10⁴ FLOP/atom/step, even with range-limited approximations

ANTON: The Original Series*

* D. E. Shaw et al., "Millisecond-Scale Molecular Dynamics Simulations on Anton," in Proc. Supercomputing (SC-09), Nov. 2009.

ANTON2: The Next Generation

- Increased speed
 - More cores, pipelines
 - Higher clock frequency
 - In-house physical design
- Enhanced capability
 - More flexible fixed-function pipelines
 - Higher capacity (atoms/ASIC)
- Simplified software
 - Single ISA for all CPU cores
 - Optimized compiler port (gcc)

	ΛΝΤΟΝ	ΛΝΤΟΝ2
CPU cores	13	66
CPU clock	485 MHz	1,650 MHz
Interaction pipelines	66	152
Pipeline clock	970 MHz	1,650 MHz
Peak throughput*	2.73 TFXOPS	12.7 TFXOPS
Main SRAM	128 KB	4,096 KB
Atoms/ASIC	460	8,000
Channel B/W	607 Gb/s	2.7 Tb/s

*TFXOPS = 10¹² 32-bit fixed-point operations per second.

ANTON2 ASIC Architecture

Flexible Subsystem Tile (Flex)

- 4 geometry cores (GCs)
 - Fixed-point SIMD processors
 - Compiler-friendly ISA optimized for MD
 - Large instruction cache
- Dispatch unit*
 - Low-latency hardware event synchronization
 - Enables exploiting fine-grained parallelism
- Globally shared SRAM
 - Stores particle data, additional code
 - Built-in atomic operations
- In-tile network with gateway to on-chip mesh

* J.P. Grossman et al., "Hardware support for Fine-Grained Event-Driven Computation in Anton 2," in Proc. ASPLOS-18, Mar. 2013.

High-Throughput Interaction Subsystem (HTIS)

- Pairwise Point Interaction Modules (PPIMs)
 - Two specialized compute pipelines each
 - Over 250 billion interactions/s/ASIC
 - Significant flexibility
 - Configurable pair selection
 - Flexible interaction functions
 - Particle/pair parameter overrides

- Single-GC "mini-flex" tile for control
- Interaction Control Block (ICB)
 - Queues for receiving different incoming particle streams
 - Streaming memory supplies high-bandwidth to PPIM array
- Output block merges results from two PPIM rows

Network Architecture*

- On-chip mesh network
 - 2.5 Tb/s bisection bandwidth
 - Also carries inter-chip through traffic
- Inter-chip 3D torus network
 - Mirrors spatial geometry of MD
 - Network sliced for load-balancing
 - 96 bi-directional lanes @ 14 Gb/s
 - 2.7 Tb/s total bandwidth / ASIC
 - 512-node bisection bandwidth of 57 Tb/s
 - Custom channel protocol
- Optimized for exploiting parallelism in MD
 - Arbitrary dimension-order routing
 - Table-based multicast
 - In-network reductions

* B. Towles *et al.*, "Unifying on-chip and inter-node switching within the Anton 2 network," in *Proc. ISCA-41*, Jun. 2014.

D E Shaw Research

Host and Debug Interfaces

Standard Host Interface

- High-bandwidth PCIe Gen3 ×16
- Direct handling of GC cache misses to host-mapped memory
- Supports DMA to/from on-chip Flex tile memory
- Full-swing CMOS interface for configuration and debug
- On-chip Logic Analyzer (LA)
 - Flexible triggering and monitoring of on-chip state
 - Trace capacity of over 650,000 cycles
 - Extensively used for performance tuning

ANTON2 ASIC

CMOS process	40 nm
Die size	408 mm ²
Total transistors	2.0 G
Gates	190 M
SRAM bits	120 M
Placed instances	51 M
Power dissipation	190 W
TDP	250 W

High Power: On-Die

- > 14,500 core supply bumps
- Custom decoupling capacitors
- Careful attention to cell density, power grid continuity
- > 25% of routable metal tracks for core power delivery
- Distribution layers use 98.5% of allowable metal for power delivery

High Power: Package

- Organic flip-chip ball grid array
 - 12 routing layers
 - 2511 pins (>40% supply)
 - Copper heat spreader lid $\Theta_{JC} \sim 0.08 \text{ °C/W}$
- Power integrity
 - > 200 package capacitors
 - 183 core supply capacitors
 - < 1 mΩ worst-case impedance
- Signal integrity
 - < 1.5 dB insertion loss</p>
 - < -50 dB near- or far-end crosstalk
 - Non-overlapping core and analog supply planes

High Power: Node Board

- 24-layer circuit, single-node board
 - Single-node board enhances serviceability
 - Critical signals routed with thin dielectric layers
 - Blind and buried vias
- Core voltage regulator module (VRM)
 - Custom, eight-phase design
 - Bench tested to 300 W
 - Field-replaceable daughter card
 - Supplied via 48-to-12V VRM on node board
- Large Cu + AI heat sink

High Power: Cooling System

- Extensive modeling
- 3 blowers in rack door
 - 1.7 kW each
 - 7,600 ft³/min airflow
 - Door weighs ~325 lbs.
- 56 kW chilled-water heat exchanger under floor
- Air temp. $16 \rightarrow 30 \degree C$
- Baffles balance airflow through node boards
- 42 kW / rack
 - ~22 kW due to ASIC
- Average die temp. 50 °C

Not All of the Cards are Stacked Against Us

- Well-understood workload
- Output trajectory supports frequent checkpointing
- Flexible frequency targets for core and channel
- Driven by performance, not yield
- High compute to I/O ratio
- No need to minimize standby power dissipation
- Moderate, well-controlled operating temperature

The Birth of a New Machine

- Timeline
 - Tapeout
 December 2012
 - 1st ASIC powered on April 2013
 - 1st 512-node segment
 December 2013
- Multiple 512-node segments in operation
- Current activities
 - Build-out continuing
 - Performance tuning
 - Biochemistry research!

D E Shaw Research