Empowered by Innovation

HOTCHIPS26 SX-ACE Processor: NEC's Brand-New Vector Processor

Shintaro Momose, Ph.D.

- **NEC Corporation**
- **IT Platform Division**
- Manager of SX vector supercomputer development
 - August 11th, 2014

SX History and Technical Evolutions

Table of Contents

Introduction

- HPC Technical Trends and Issues
- SX-ACE Processor Design Direction

Processor Architecture

- Processor/Core Architectures and Implementations
- Memory Subsystem

Performance Evaluations

• Experimental Results of Several memory intensive Benchmarks

Conclusions

3

Introduction

4

Trend of TOP500 (1st ~ 10th system)

Growing of LINPAC performance has been provided by system enlarging
User mast spend their time to extract massive parallelism
Smaller # of cores with big cores can reduce the difficulty

Required Byte/Flop in Real Applications

According to Japanese Government (MEXT) working group report for a wide variety of strategic segment applications, diverse characteristics are observed.

MEXT: Ministry of Education, Culture, Sports, Science & Technology

B/F requirement from each application differs greatly. Any single architecture cannot cover all application areas.

6

Concepts of SX-ACE

The best solution for memory intensive APs against scalar processors trend

Architecture

8

Processor Overview

9

Single Core Comparison

The SX-ACE core can provide the world top-level performance and the largest memory bandwidth

SX-/ICE

Floor Plan of the CPU

Core Architecture

256 operations = 16 parallel x 16 clock cycles

Memory Network Integration

Large SMP configuration can provide high sustained performance
But, over 70% power was consumed by the memory network
SX-ACE processor integrates the memory network into LSI

NEC

Memory Subsystem

Reducing DRAM Energy

RD:WR 1:1, Micron DDR3 power calculator 0.96

BG

Assignable Data Buffer (ADB)

On-chip Cache for Vector

- •Private, 1MB, 4-way, 16-bank
- •256GB/s bandwidth per core
- Software controllable cache
- •Customized for fast random access

Assignable Feature

- A bypass flag in each instruction
- Compiler/User can control
- Avoiding cache pollution

MSHR Feature

 Redundant memory requests same as an inflight memory request are held to reduce memory transactions

Out-of-Order Vector Memory Access

Node Packaging

Rated power consumption = 469W

Hybrid Cooling

Optimization of cooling efficiency and rack weight

CPU:Other components:

water cooling air cooling

19 © NEC Corporation, 2014 / HOTCHIPS26

Performance Evaluation

Performance Evaluation Conditions

Evaluation programs

Evaluate point	Benchmark	
Off-chip memory bandwidth	STREAM (TRIAD)	
Off/On-chip memory bandwidth	Himeno Benchmark (High memory intensive)	
Indirect memory access performance	Legendre transformation	

Each evaluation is carried out by only using compiler optimizations without code modifications for individual systems

Performance comparison

CPU	Performance	Memory bandwidth	Rated system Watts/CPU
SX-9	$102GF = 102GF \times 1c$	256GB/s	1875W
SX-ACE	$256GF = 64GF \times 4c$	256GB/s	469W
IVB(Xeon)	230GF = 19GF x12c	60GB/s	200W
Power7	245GF = 31GF x 8c	128GB/s	656W
FX10(Sparc)	234GF = 15GF x16c	85GB/s	281W

Power7 and FX10 are measured through a joint research with Tohoku University

Memory Bandwidth 1

Evaluation of Off-chip memory bandwidth

Benchmark code:

STREAM (TRIAD)

300 Memory bandwidth [GB/s] SX-9 250 SX-ACE SX-ACE IVB 200 Power7 ¹**26** FX10 100 50 0 10 11 12 13 14 15 16 1 9 *#* of cores used per processor

Sustained memory bandwidth

Power efficiency (SX-ACE=1)

- Only the SX-ACE single core can use full memory bandwidth
- This can accelerate memory-intensive serial parts in parallel processing
- SX-ACE provides the best memory bandwidth per watt

Memory Bandwidth 2

Evaluation of Off/On-chip memory bandwidth

Benchmark code: Himeno benchmark (highly memory intensive) solving the Poisson equation with the Jacobi iterative method

Sustained performance (SX-ACE=1)

ADB and MSHR improve sustained memory bandwidth compared with its predecessor
SX-ACE is the best

Power efficiency (SX-ACE=1)

SX-ACE is assumed to provide 2~25x higher power efficiency in the case of memory intensive APs having off/on chip memory accesses

Indirect Memory Access

Evaluation of Indirect memory access performance

- Benchmark code: Legendre transformation
- Cache effective BM (4.4MB data)

Sustained performance (SX-ACE=1)

- Cache is effective
- ADB, MSHR, OoO, and short memory access latency work well

- SX-ACE improvement provides 25x higher power efficiency than SX-9
- But, IVB is the best due to a larger cache and a lower power consumption

Conclusions

Issue of modern scalar/accelerator processors

- Massive parallel with small cores
- •Low memory bandwidth

SX-ACE direction

- Providing the big core with large memory bandwidth
- •Improving proven vector architecture

SX-ACE processor

- •4 cores vector processor
- •64GF core performance with 64-256GB/s memory bandwidth
- Efficient memory subsystem for higher sustained memory bandwidth

Performance

 High sustained performance and power efficiency for memory intensive benchmarks

I would like to express my gratitude to Cyber Science Center at Tohoku University for the intensive performance evaluation of the SX vector supercomputers as a part of the joint research project with NEC Corporation.

Tohoku University, Cyber Science Center

- Professor
- Associate Professor
- Assistant Professor

NEC Corporation

- Senior Manager
- Manager

Hiroaki Kobayashi Ryusuke Egawa Kazuhiko Komatsu

Takashi Hagiwara Yoko Isobe

Empowered by Innovation

