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 Specific features of nodes for IoT 

 

Nodes for the Internet of Things: Peculiarities 
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 Specific features of nodes for IoT 
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small size 

  

  
  

  

1-100 mm3  

(battery, energy scavenger) 
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 Specific features of nodes for IoT 
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 Specific features of nodes for IoT 
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 Specific features of nodes for IoT 
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small size 

untethered 

always 
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built-in 

  
computation 
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- leverage specialized HW 

 

- real time: scalable 

performance is needed 

 

- data logging: less 

performance, but memory cost 
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 Specific features of nodes for IoT 
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always 
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built-in 
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communication 
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communication tradeoff 

- data representation 

(compressive sensing, 

compression) 
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Power vs Energy 
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 Duty cycled systems with limited power 

 active only periodically (or on demand) for a short time 

 

 

 

 

 

 partition into always-on block (timers, retentive memory) and 

duty cycled blocks (all others, active 0.1-1% of the time) 

 

 
 

active mode

sleep mode
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[RJA12] M. Alioto, et Al., “Active RFID: A Perpetual Wireless Communications Platform 

for Sensors,” ESSCIRC 2012 
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 minimum power is the goal for always-on block 

 minimize power, essentially  

 leakage (dynamic power very small  

 – little active and slow) 

 

 minimum energy per operation is the goal for duty-

cycled blocks 

 minimize energy per operation  

 (dynamic + leakage energy) 

 1/X duty cycling increases energy  

 budget by X 
 

in both cases, ultra-low voltage operation is absolutely needed 
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Ultra-Low Voltage Operation 
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 Voltage scaling is a powerful knob to improve 

energy efficiency 

 quadratic benefit, if dynamic energy CV2 dominates 

 performance degradation 
 

 How aggressively  

 should we scale VDD? 

 energy-performance tradeoff 

 NT: relatively good speed 

 nearly min. energy,  

 ST: low speed, min. power 
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 Example: first mm3 system 

 

 
 

 transistors in weak (ST) or moderate (NT) inversion 

 

 

 

 ITRS: VDD, VTH  constant  
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 Gate delay: CVDD/2Ion 

 Ion defines performance 

 

 ION EKV model (transregional) [EV06] 

 Inversion Coefficient vs gate overdrive 
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Performance @ ULV: Transistor On-Current 

𝐼𝐶 =
𝐼𝑜𝑛
𝐼0

= ln 𝑒𝑣 + 1 2 
𝐼0 = 2 ⋅ 𝑛 ⋅ 𝜇 ⋅ 𝐶𝑂𝑋

𝑊

𝐿
𝑣𝑡
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𝑣 =
𝑉𝐷𝐷 − 𝑉𝑇𝐻
2 ⋅ 𝑛 ⋅ 𝑣𝑡

 

IC < 0.1 IC > 10 0.1   IC  10 

[EV06] C. Enz, E. Vittoz, Charge-Based MOS Transistor Modeling (...), Wiley, 2006 
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 ION vs VDD: steep (superlinear) in NT and ST 

 performance sensitive 

 to both VDD and VTH 

 choice of VTH  

 really critical  

 sensitivity to VDD, 

 VTH variations... 
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region VDD on current 

weak inversion sub threshold 
𝑰𝒐𝒏 ≈ 𝑰𝟎 ⋅ 𝒆

𝑽𝑫𝑫−𝑽𝑻𝑯
𝒏⋅𝒗𝒕  

moderate inversion near threshold 𝑰𝒐𝒏 ≈ 𝟎. 𝟓𝟒 ⋅ 𝑰𝟎 ⋅ 𝒗 + 𝟎. 𝟖𝟖 𝟐 

strong inversion above threshold 𝐼𝑜𝑛 ≈ 𝐼0 ⋅ 𝑣
𝛼    (1) 
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 Performance: fan-out-4 delay (FO4) 

 speed of technology and ()architecture 
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 Leveraging high sensitivity of Ion to VDD @ NT 

 VDD powerful knob to dynamically improve performance 

 performance improvement due to V=100-mV boosting 

 

 

 

 

 

 

 
 

 ST: more effective, pretty useless (low performance anyway) 

 NT: effective and low energy cost (V is small fraction of VDD) 
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VDD FO4 improvement 

200 mV 7.5X 

400 mV 3.6X 

600 mV 1.6X 

800 mV 1.2X 

1 V 1.1X 

ST: 8X improvement/100 mV 

NT: 2-4X improvement/100 mV 
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 Selective voltage boosting largely improves area and 

energy efficiency at NT and ST 

 sizing has a linear impact on transistor strength 

 boosting: superlinear  smaller transistor at iso-strength 

 example at NT (VDD=500 mV)  
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Design Issues and Solutions 

at Ultra-Low Voltages: Performance 
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 Performance at NT/ST worse than nominal voltage 

 can be acceptable in practical situations 

 tasks of IoT nodes are often relatively simple 

 example of typical throughput: few hundreds of MOPS (e.g., 

video processing) down to kOPS (e.g., temper. monitoring) 
 

 

 Wire delay at NT/ST 

 gate delay much less critical  

 than nominal VDD 

 design as in the “good old days” 

Performance Degradation 

...

wire delay

d
e

la
y

VDD
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 If higher performance is sometimes needed... 

 wide voltage scaling  

 (e.g., from 400 mV to 1.2 V) 

 

 

 large performance improvement (10X) 

 energy/op increases quadratically (9X) 

 tolerable if occasional 

 

 optimized for NT  

 energy/performance tradeoff 

at 1.2 V is degraded by 25% 

 

1 10 
400 mV 

1.2 V 

𝐸𝑑𝑦𝑛𝐶 ⋅ 𝑉𝐷𝐷
2  

[J12] S. Jain, et Al., IEEE ISSCC Dig. Tech. Papers, pp. 66–67, Feb. 2012 
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 trading off area for performance: parallelism 

 intra-chip communication limits perf./energy gains 
 

 specificity of task can be leveraged for better balance of 

computation/communication cost 
 

 across-level design is  

 required to manage 

 these tradeoffs 

 

 

area 

performance,  
energy efficiency 

layout 

SW 

algorithm 

architect
ure 

circuit 

NT 

ST 
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 trading off area for performance: specialized HW 
 

 example: FFT, Java processor,  

 AES, MPEG decoder... 
 

 specialized HW has better 

 performance/energy tradeoff 

 than general-purpose 
 

 larger benefit for recurrent and specific tasks 

area 

performance,  
energy efficiency 
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Design Issues and Solutions 

at Ultra-Low Voltages: Leakage 
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 If dynamic energy per operation dominates: 

 

 reduce VDD as much as possible 

 energy reduction limited by VDD,min (defined by robustness 

issues, very different for logic and memory) 
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Energy vs VDD 

VDD

E

VDD,min

Edyn

VDD 

(mV) 

VDD
2 energy 

saving 

including 

Cg(VDD) 

200 mV 36X 54X 

400 mV 9X 11.6X 

600 mV 4X 4.4X 

800 mV 2.2X 2.4X 

1 V 1.4X 1.4X 

1.2 V 1X 1X 

𝐸𝑑𝑦𝑛 = 𝛼𝑆𝑊 ⋅ 𝐶 ⋅ 𝑉𝐷𝐷
2  
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 If leakage energy per operation dominates: 

 
 

 

 at NT and ST, increases significantly (FO4 increase) 

 example in 28nm: 
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𝐸𝑙𝑘𝑔 = 𝑉𝐷𝐷 ⋅ 𝐼𝑜𝑓𝑓 ⋅ 𝐹𝑂4 ⋅ 𝐿𝐷𝑒𝑓𝑓 ⋅ 𝐶𝑃𝑂 
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 Combining dynamic and leakage energy 

 minimum energy point (MEP) 

 relatively flat (VDD mainly set by performance target) 

 can lie in either NT or ST 

 time varying: depends on temperature, data set... 
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 Leakage energy takes up increasingly larger fraction of 

total energy at lower VDD 

 at low VDD, leakage energy increases exponentially, dynamic 

energy decreases quadratically 

 ex.: processor with L1 cache (VDDcache,min=0.55 V) 

Prof. Massimo Alioto 

42% 95% 14% 

[J12] S. Jain, et Al., IEEE ISSCC Dig. Tech. Papers, pp. 66–67, Feb. 2012 
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 Leakage is truly critical (process not enough) 

 large, limits energy reduction 
 

 Several traditional circuit techniques do not work... 

 transistor stacking is ineffective 
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Traditional Techniques for Low Leakage 
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 power gating is much less effective (Ion/Ioff  degradation) 

 

 

 

 

 

 

 

 

 typical leakage reduction: 10-100X 

 NT: small leakage reduction, ST: no leakage reduction at all 

 solution: boost gate voltage of sleep transistor (increases Ion/Ioff) 
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 multi-VTH actually degrades energy efficiency 

 delay sensitive to VTH  critical path changes at scaled VDD 

 

 

 

 

 

 

 

 double energy penalty  

 compared to single-VTH 

  

Prof. Massimo Alioto 

VDD=0.6 V 
HVT 

LVT VDD=0.4 V 

𝐸𝑙𝑘𝑔 = 𝑉𝐷𝐷 ⋅ 𝐼𝑜𝑓𝑓 ⋅ 𝑇𝐶𝐾 ⋅ 𝐶𝑃𝑂 

larger than single-(low)VTH 

larger than single-(high)VTH 

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

n
o

rm
al

iz
e

d
 e

n
e

rg
y

VDD [mV]
multi-VTH LVT LVT+100 mV

LVT

MEP1=(350 mV, 0.087)
MEP2=(350 mV, 0.089)
MEP3=(450 mV, 0.13)

LVT+100 mV

1.5X 



33 

 Leakage reduction at ULV: alternative approaches 

 fine-grain power gating 

 disable unused blocks at runtime 

 small  quickly and frequently 

 overhead: multiple sleep 

 transistors, isolation, control  

 lower control overhead via ckt/architectural support for SW 

 

 fine-grain voltage domains 

 Elkg reduced at lower VDD (e.g., 2X/100 mV) 

 selectively reduce VDD wherever possible (slower) 

 similar considerations as power gating 
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Counteracting Leakage at ULV 
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 microarchitecture-circuit co-design: pipelining 

 

 

 

 

 

 
 

 use deep pipelines + refined circuit  

 techniques/methodologies to deal with 

 clocking overhead 

 example: 17FO4/stage in FFT engine  

(30MHz @ 0.27V, 4X less energy than state of the art) 
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𝐸𝑙𝑘𝑔 = 𝑉𝐷𝐷 ⋅ 𝐼𝑜𝑓𝑓 ⋅ 𝐹𝑂4 ⋅ 𝑳𝑫𝒆𝒇𝒇 ⋅ 𝐶𝑃𝑂 
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CLOCKING OVERHEAD

[AJC11] M. Seok, et Al. “A 0.27V, 30MHz, 17.7nJ/transform 1024-pt complex FFT core with 

super-pipelining,” ISSCC 2011 

leakage/clocking 

energy tradeoff 
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 VTH selection 

 energy-optimal VDD,opt  

 is independent of VTH 

 choose VTH according 

 to performance target 

 
 

 

 

 body biasing 

 makes sense in FDSOI (VTH sensitivity to VBB large enough) 

Prof. Massimo Alioto 

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

n
o

rm
al

iz
e

d
 e

n
e

rg
y

VDD [mV]
LVT-100 mV LVT LVT+100 mV

VTH

MEP1=(350 mV, 0.086)
MEP2=(350 mV, 0.066)
MEP3=(350 mV, 0.064)

[A12] M. Alioto, “Ultra-Low Power VLSI Circuit Design 

Demystified and Explained: A Tutorial,” IEEE TCAS-I, Jan. 2012. 
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Design Issues and Solutions at Ultra-Low 

Voltages: Variability and Resiliency 
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Variations: Why do They Matter? 

 Resiliency degraded at ULV 

 process/voltage/temperature  

 larger than at nominal VDD 

 ageing, soft errors... 
 

 

 design margining 

 cycle margin  

 (20-30% @ full VDD) 
 

 degrades performance  

 AND energy efficiency 
 

 large energy penalty  
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Process Variations 

Larger variability s/ 

 due to larger sensitivity of Ion to VTH 

 

PDF heavily non-Gaussian 

 in subthreshold tends to lognormal 

 right skewed  average > nominal   

 larger no. of ss for given yield 

 Variability of delay (mainly due to Ion) 

 random variations are dominant (area-mismatch tradeoff) 

 two negative effects arise at NT [GIS11] 

Random Dopant 

Fluctuation, Line Edge 

Roughness... 

[GIS11] G. Gammie, et Al., “A 28nm 0.6V low-power DSP 

for mobile applications,” ISSCC 2011 
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 Semi-quantitative analysis of Ion variations 

 

 

 

 

 
 

 at NT, s/ is intermediate (4-5X) 
 

 no. of std deviations (yield) 

 at NT: somewhat intermediate 

 ex. @ 3s for single gate:  

margin = 10s/ = 300% 
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 Variability/leakage tradeoff unavoidable 

 averaging effect reduces variability by 

 cascaded  

 logic gates 

 stacked 

 transistors 

 larger transistors 
 
 

 path delay variability from FO4 variability (min. sized) 

 

 

 

 

 

 

 

 

Prof. Massimo Alioto 

𝑛𝜎
𝜎𝑝𝑎𝑡ℎ𝑑𝑒𝑙𝑎𝑦

𝜇𝑝𝑎𝑡ℎ𝑑𝑒𝑙𝑎𝑦
= 𝑛𝜎

𝜎𝐹𝑂4,𝐷2𝐷
𝜇𝐹𝑂4,𝐷2𝐷

2

+

𝜎𝐹𝑂4,𝑟𝑎𝑛𝑑𝑜𝑚
𝜇𝐹𝑂4,𝑟𝑎𝑛𝑑𝑜𝑚

2

𝑵𝒈𝒂𝒕𝒆 ⋅ 𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉 ⋅ 𝑵𝒔𝒕𝒂𝒄𝒌𝒆𝒅
 

strength 

stacking 

cascading 
...1 2 3 Ngate

𝝈

𝝁
=

𝟏

𝑵𝒈𝒂𝒕𝒆

 

𝝈

𝝁
=

𝟏

𝑵𝒔𝒕𝒂𝒄𝒌𝒆𝒅

 

𝝈

𝝁
=

𝟏

𝒔𝒕𝒓𝒆𝒏𝒈𝒕𝒉
 

21 Nstacked

...

strength W/Wmin

L=Lmin

[MWA10] M. Merrett, et Al., “Design Metrics for RTL Level Estimation of Delay Variability Due to 

Intradie (Random) Variations,” ISCAS 2010 
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 Delay is very sensitive to VDD and temperature 

 voltage: up to 30-50% margin 

 temperature: up to 100% margin 

 NT systems require adaptive schemes  

 sense VDD and T and adjust clock cycle 

 can compensate slow variations (margin needed for fast) 
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Voltage/Temperature Variations 

0

0.05

0.1

0.15

0.2

0.25

0 200 400 600 800 1000 1200

n
o

rm
al

iz
e

d
 e

n
e

rg
y

VDD [mV]

LVT-100 mV

25FO4 (27oC) 50FO4 (27oC) 100FO4 (27oC)
25FO4 (70Oc) 50FO4 (70oC) 100FO4 (70oC)

VTH

1.69X larger 

Emin 1.36X larger 

Emin 
1.37X larger 

Emin 

1

1.1

1.2

1.3

1.4

1.5

1.6

0 200 400 600 800 1000 1200

cy
cl

e
 t

im
e

 m
ar

gi
n

VDD [mV]
5% VDD droop 10% VDD droop



42 Prof. Massimo Alioto 

 Compensation of variations at different times 

 

 

 

 

 

 

 tradeoff between energy cost of margining vs energy cost 

to reduce amount of margin 

 large variations at NT/ST: runtime compensation usually 

required 

 detect timing errors/correct: minimum or no margin at all 

 

clock cycle margin to deal with design uncertainty sources:

time at which LUT is 
updated 

process variations aging
temperature/slow 

VDD variations
fast 

variations
total clock cycle 

margin
implementation 

complexity/area overhead

design time

testing time

boot time

periodically @runtime

nominal clock cycle clock cycle margin

margined clock cycle

runtime

Clock Cycle Margin Reduction/Elimination 
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Margin Elimination: Timing Error Detection 

 Reduce/eliminate worst-case  

 margin by catching delay faults 

 correct at run-time, tune to compensate actual variations 
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Margin Elimination: Error Correction 

 Faults can be corrected at various levels 

 across-level design/optimization/control needed 

 

 

 

 

 
 

 energy overhead 

 

 

 testing is painful (long, tuning) 

SW Architecture Microarchitecture Circuit 

faster correction 

Circuit Microarchitecture Architecture SW 

less HW resources 

SW Architecture Microarchitecture Circuit 

lower energy/performance penalty 

2 DDcorrection VCfrateerrorEE 
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Approximate Computing: Negative Margining 

 Some apps do not need to have perfect computation 

 approximate computing (deterministic, voltage overscaling) 

 ex.: multimedia, sensor fusion 

 avg error rate kept within bound (slow correction loop) 

 ex.: our first SRAM with Dynamically Adjustable Error-Quality 

quality 

energy 

OS 

HW 

sensors (context) 

energy-quality 
    knobs 

quality 

[FKB14] F. Frustaci, et Al., “A 32kb SRAM for Error-Free and Error-Tolerant Applications 

with Dynamic Energy-Quality Management in 28nm CMOS,” ISSCC 2014 
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 Functional failures occur at very low VDD 

 flip-flops/latches prone to such failures (highest VDD,min) 

 due to multiple connected outputs (current contention due to low 

Ion/Ioff) 

 

 large worst-case variations  

 due to high number of FFs  

 (millions) 
 

 VDD,min dominated by variation- 

 induced p/n imbalance [A12a] 
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Functional Failures and VDD,min 

theoretical lower bound

VDD,min increase due to NMOS/

PMOS imbalance

VDD,min increase due to 

variations

VDD,min increase due to residual 

PUN/PDN imbalance

8 – 9 vt

0.5 vt

2.5 vt

2 vt

13 – 14 vt 

325 – 350 mV

[A12a] 

𝑉𝐷𝐷,𝑚𝑖𝑛 = 𝑛 ⋅ 𝑣𝑡 ⋅ 1 + ln
2

𝑛
+ ln⁡(𝑝𝑛)  

[A12a] M. Alioto, “Ultra-Low Power VLSI Circuit Design Demystified and Explained: A 

Tutorial,” IEEE TCAS-I, Jan. 2012. 
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 SRAM more vulnerable than logic 

 read/write/hold margins set by  

 strength ratio 

 no averaging across multiple cells,  

 as opposed to logic 

 

 reducing VDD,min of SRAMs at different levels 

 within the cell: VTH adjustment, lithography-friendly layout, 

circuit (sizing, more robust topologies) 

 outside the cell: array architecture, assist techniques 
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 Multi-VDD with small area/energy overhead 

 avoid level shifters altogether [MYN11] 

 small voltage domains dynamically assigned  

 no level shifters (small voltage difference) 

 

 

 Panoptic Dynamic Voltage Scaling [PDC09] 

 spatial and temporal fine granularity 

 sleep transistors (re)used to dynamically  

 select VDD (workload) 

 34% (44%) energy saving over multi-VDD (single VDD) 
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Fine-Grain Adaptation 

[MYN11] A. Muramatsu, et Al. "12% Power Reduction by Within-Functional-

Block Fine-Grained Adaptive Dual Supply Voltage Control (...)," ESSCIRC 2011 

[PDC09] M. Putic, et Al., “Panoptic DVS: A Fine-Grained Dynamic Voltage Scaling Framework for Energy 

Scalable CMOS Design,” ICCD 2009 
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 Selective boosting, state-retentive sleep [TRA14] 

 Graphics Execution Core 

 VDD of register file/ROM boosted by 270 mV to improve VDD,min 

 adaptive clocking reacts to first VDD droop: senses and divides 

fCLK for a fixed time to recover (margin reduction) 

 4-20X register file leakage reduction in sleep mode through 

voltage reduction down to Data Retention Voltage of bitcells 

 

 Exploiting variations via cherry picking [RTG13] 

 different cores: different energy-performance tradeoffs 

 redundant cores, choose most energy efficient 

 22% better performance at 33% dark silicon  
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[TRA14] C. Tokunaga, et Al. "A Graphics Execution Core in 22nm CMOS Featuring Adaptive Clocking, 

Selective Boosting and State-Retentive Sleep," ISSCC 2014 

[RTG13] B. Raghunathan, et Al., “Cherry-Picking: Exploiting Process Variations 

in Dark-Silicon Homogeneous Chip Multi-Processors,” DATE 2013 
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Conclusions 
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IoT Naturally Follows Historical Trends... 
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 Size is a technology driver for the IoT 

 Bell’s law: 10-100X size reduction 

 every 10 years 

 IoT should happen in this decade 

 

 Energy is the bottleneck for size 

 Koomey’s law [KBS10]: 2X / 1.6 years 

 75X in 10 years (4X from technology scaling) 

 rest of it must come from ckt/architecture/system 

 quicker development, more aggressive reduction: further even 

more innovation 
[KBS10] J. Koomey, et Al., “Implications of Historical Trends in the Electrical 
Efficiency of Computing” IEEE Annals of the History of Computing, March 2011 

by courtesy of D. Blaauw 

IoT 
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 IoT needs ultra-low voltage operation 

 energy vs power, NT vs ST 
 

 Issues and solutions at ULV 

 performance 

 fine-grain selective voltage boosting, across-boundary design 

 leakage 

 fine-grain VDD/power gating domains, across-boundary 

design 

 variations and resiliency 

 run-time adaptation to eliminate cycle margin and compensate 

variations 
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Challenges and Ideas for IoT 
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fine-grain 
tuning 

across-
boundary 

design 
adaptivity 

IoT node 
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http://eshop.ambroweb.com/store/product_info.php/manufacturers_id/50/products_id/1113?osCsid=5bc26ae0606e7bc9aa0b9149928af4b5
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BACKUP SLIDES 



56 Prof. Massimo Alioto 

 Typical performance and power specs 

 throughput: tens-hundreds  

 of MOPS down to kOPS 

(10X slower or more than mobile) 

 

 

 
 

 

 

[UAK12] K. Uchiyama, et Al., Heterogeneous Multicore Processor 

Technologies for Embedded Systems, Springer, 2012 

GOPS 

 power: tens of pJ/op down to few pJ/op 

mobile (active) IoT (active) IoT(avg.)

1 W

1 W

10 mW

100 W

100 nW

1 nW

...

...

...

...

...

10 mAh  10-day  100%  

duty 

cycle

10 mAh  10-day  5%  

10 mAh  decades   

   perpetual   
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 Typical energy range 

 energy per op: 

 

 

 

 

 

 

 

 achievable through ULV (5X), architecture tailoring (5-10X), 

specialized HW (10X) w.r.t. high performance 
 

 not much gain from technology scaling... 

 

 

 

 

 

 

 

 

 

 

 

 

 energy: few tens of pJ/op down to few pJ/op 

 10-100X lower than mobile 

 

 

 

 

 

 

 

 

 
 

 

 

𝑃𝑡𝑜𝑡 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ⋅ 𝐸𝑜𝑝 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐 

server IoTmobilelaptop

10 nJ

1 nJ

100 pJ

10 pJ

1 pJ

10 GOPS/W 

1 GOPS/W 

100-1,000 GOPS/W 

wider range (design 

diversification) 

10-100X 


