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• Issues - Size, weight, operating lifetime  

• Energy efficiency of IC’s is crucial 

Increasing Energy Criticality 

Implantables 

Sensor Networks 
Handhelds 

Portable 

Computers 

Wearable Devices 

Trends in low-power electronics 
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IoT Node for Monitoring   

Component Power Comments 

Inst. Amplifier  

[Verma, 

VLSI09] 

3.5µW 

1V VDD, 

1.3µVrms input 

referred noise 

ADC 

[Yaul, 

ISSCC14] 

3.7µW 

1V VDD, 450kS/s, 

9.8ENOB 

 

16b µ-cont  

[Kwong, 

ISSCC08] 

2.72µW 
0.5V VDD,128kb 

SRAM, 100kHz 

Radio  

[CC 2550] 

 

33.6mW

(active) 

 

3V VDD, 2.4GHz,  

-12dBm POUT 

• Power consumption of 
building blocks steadily 
decreasing 

• Low voltage operation, 
multi-cores, local 
processing of information, 
aggressive duty cycling 
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LSB-first SAR ADC for Low-Activity Signals 
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αECG = 0.6% 

Range 

ECG Signal, 1 kS/s Vibration Signal, 5 kS/s 

Range is given for best case 

(DC) and worst case (fullscale 

Nyquist sinusoid) inputs. 

[F. Yaul, ISSCC 2014] 

LSB-first predictive algorithm for reduced power 



Reduced radio consumption 

On-scalp Field Potentials (EEG): 

Clinical  

onset 

Electrical  

onset 

~7.5sec 

Computation vs. Communication Trade-off   

Conventional- 

Wireless EEG 

Using Local 

Processing 

Capture 75 μW 75 μW 

Digital processing -- 2 μW 

Radio 1733 μW 43 μW 

Total 1808 μW 120 μW 

[N. Verma, VLSI Circuits Symposium 2009] 

Epileptic Seizure Onset Detection  



Hard to 

Reach 

Convenience 

Electronic Shelf 

Labels 
Solar Keyboard 

Environmental  Awareness 

Pipelines Oil Rig 

Occupancy 

Sensor 

Self-Powered Applications 

Smoke 

Detector 

Low data rate, low duty cycle, ultra-low power 
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Self-powered 

switches 

Structural 

sensors 

Implantables 

TPMS 



Outline 

 

• Energy Sources and Characteristics 
 Energy Harvesting System 
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 Thermal 
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• Energy Storage Options 

• Energy Management Circuits 
Chargers 

DC/DC Converters 

 Battery Management 

 Peripherals 

• Summary 
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Battery Operated System 

• Battery is an energy source 

• System needs to be ON only when the load demands it 

Self-powered solutions desirable 

1cm3 Li-ion  2800J  1year at 100μW 

Battery 

Management 

(UV, OT)

Power good 

indicator

RegulatorBattery

AFE   

Radio 

MicroProc. 

Sensor
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Energy Harvesting System 
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Energy harvesters are power sources 
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Harvesting Light Energy 

*US Department of Energy 

• Incident light generates 
electron-hole pairs 

• ISC proportional to light 
intensity  
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ISC CCELL

RS

RP

VCELL

ICELL

_

+

Conditions Power density 

Indoor 10µW/cm2 

Outdoor 10mW/cm2 



Common Solar Cell Types 

Crystalline 

Amorphous 

Dye-Sensitized 

(DSSC) 

[Sinonar] [IXYS] 

[G24i] 
[SolarPrint] 

[Sanyo] [EnOcean] 
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M. Gratzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” 

Philosophical Trans. Royal Society A, 2007 



Output power curves with light intensity 

12 

Increasing 

Intensity 



• One p-n leg generates ~ 0.2mV/K 

• Open-circuit voltage proportional to temperature 
difference across TEG 

Thermoelectric Energy Harvesters 
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Conditions Power density 

Wearable 60µW/cm2 

Industrial 5mW/cm2 

Lim, Nasa Tech Briefs, 2008 



TEG Characteristics 

• Tellurex G1-1.0-127-1.27 

• S = 23mV/K; RT = 5Ω 

[Tellurex] 
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TEG Characteristics 

• Micropelt MPG-D751 

• S = 155mV/K; RT = 300Ω 
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[Micropelt] 



Body Heat Powered Electronics 

System Concept Thermo-Electric Devices 

Thermal Energy Chip  

For low-power wearable electronics 

[Y. Ramadass and A. Chandrakasan, ISSCC 2010] 

IMEC 
Tellurex Micro-pelt 



Mechanical Vibration Harvesters 

[Perpetuum] [FerroSolutions] 

FerroSolutions VEH-460 
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Conditions Power density 

Wearable 4µW/cm3 

Industrial 1mW/cm3 

[Mide Volture v22b] 



Vibration-to-Electric Energy 

Piezoelectric  

Micro-Power 

Generators 

10µW -100µW generated  

Sang-Gook Kim (MIT) 

RECTIFIER

BUCK BOOST

ARBITER

RECTIFIER

BUCK BOOST

ARBITER

Vibrations Power Distributed Sensor Devices 

(Battery-less Operation) 

Self-powered Wireless  

Corrosion  Monitoring  

Sensors Power Converter 



e-Textiles with Wireless Power/Data Transfer 

Nachiket Desai, ISSCC 2013 
Conditions Power density 

Near field 5mW/cm2 

Far field <10µW/cm2 
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Energy Storage Options 
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Store extracted energy from harvesters and 

provide to load 



Energy Buffer 
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• Accumulate input power 

• Provide peak output power 

• Smooth out input, output power imbalances 



Energy Storage Options 

Conventional 

Batteries 

Recharge Cycles 100s 

Self Discharge Moderate 

Charge Time Hours 

Impedance Low - High 

Physical Size Large 

Capacity 0.3-2500mAH 
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• NiCd, NiMH, Li chemistries 

• AA, AAA batteries have high 
capacity, low internal impedance, 
higher self discharge 

• Li coin cells have low capacity, 
high internal impedance, smaller 
form factor 



Energy Storage Options 

Conventional 

Batteries 

Thin Film 

Batteries 

Recharge Cycles 100s 5k-10k 

Self Discharge Moderate Negligible 

Charge Time Hours Minutes 

Impedance Low - High High 

Physical Size Large Small 

Capacity 0.3-2500mAH 12-2200µAH 
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• Solid-state LiPON electrolyte 

• Higher output currents 
compared to coin cells 

• Extremely low self-discharge 

• Variety of form factors, 
intrinsically safe, high temp. 



Energy Storage Options 

Conventional 

Batteries 

Thin Film 

Batteries 
Supercaps 

Recharge Cycles 100s 5k-10k Millions 

Self Discharge Moderate Negligible High 

Charge Time Hours Minutes Sec-Minutes 

Impedance Low - High High Low 

Physical Size Large Small Medium 

Capacity 0.3-2500mAH 12-2200µAH 10-100µAH 
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• Supports high peak output 
currents 

• Very high leakage currents 

• Wide range of operating 
temperature 

 

[AVX] 



Duty Cycle Impact on Current 
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Active current 

dominant 

Sleep current 

dominant 

)1(**)( DIsleepDIactiveavgI 

Interval Activity

 Width Pulse
D 

Pulse Width = 50ms 



Energy Processor 

Take input energy from harvester and charge the 

storage element efficiently 
26 
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VSS
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VSTOR

bq25570

10nF

VREF_SAMP

MPPT

VOC_SAMP

High efficiency 

boost charger 

with MPPT 

Custom programmability for 

battery OV, battery OK, and 

buck output regulation. 

100mV to 4V VIN 

with cold-start 

circuit 

Harvester 

Storage           

(2.0 – 5.5V) 

Prog. between 

1.3V and 5V 

Energy Mgmt. IC -BQ25570 

Quiescent 

Current = 480nA  

http://www.ti.com/product/bq25570 



BQ25570 Charger Architecture  

VSTOR

LBST

HS_ON

CSTOR

HS_ON

CS2

CS1

DIGITAL 

LOGIC
DRIVERS

LS_ON

DELAY

COMP1

HS_ON

COMP2

VSTOR

OV_REF

VREF

VIN_DC

OCV     

DETECT

VIN_DC

CS1 CS2

STOP_HS

OV

OCV_EN CHARGER_EN

DELAY
LS_ON STOP_LS

VIN_DC

• Synchronous boost converter with input regulation 

• 80mV – 4V input voltage 

• 10µA – 100mA input current 
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BQ25570 Charger Efficiency 
• Single cell solar operation in indoor light (200 lux) 

• Harvesting from thermoelectric generators 

 
 

Eff Vs Iin 

•  35% efficiency with 10µA  
  input at 0.5V 
 

•  > 80% above 100µA. 

Eff Vs Vin 

•  38% efficiency with 100mV  
  input at 10mA 
 

•  >80% above 0.5V 
29 



Revisiting solar MPP curves 

30 
Output power levels within 0.5% 

MPP 

0.73(OCV) 



BQ25570 Maximum Power Point Tracking 

 

 

 

 

 

 

 

 

• Open circuit voltage based MPPT 

• Charger periodically turned off using EN signal 

• IC samples and holds fraction of OCV on external capacitor 

• Charger regulates input to value held on capacitor 

Solar TEG 

MPPT 
fraction 

~75% 50% 

256ms 

16s 

EN 

VIN_DC
Charger

CREF

ENR1

R2

ENZ

This work

31 
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Maximum Power Point Tracking 
Input Open Circuit 

Voltage (OCV) 

Input Voltage 

(VIN) 

1V 

2V 

16s 16s 

0.8V 

1.6V 

0.8V 

1V Charger 

regulates 

VIN to 80% 

of OCV 

Periodic 

sampling of 

OCV 



• Function : Start system with depleted storage 

• Architecture : Input powered boost converter 

 

330mV Cold Start 

Enable 

Switch 

33 
K. Kadirvel, ISSCC, 2012  



Regulator 

Present stored energy as a regulated supply to 

load circuits 
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DC-DC Converter Topologies 

• Linear loss in efficiency 
• Compact and easy to control 

Linear (LDO) 
Regulators 

 
 
 

Fully integrated  

High efficiency X 

Voltage Scalability  

COUT

AMP

VREF

VIN

VOUT

IN

OUT

V

V


M. Al-Shyoukh et al., “A Transient Enhanced Low-Quiescent Current Low-Dropout Regulator 

with Buffer Impedance Attenuation” IEEE JSSC, Aug 2007  
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DC-DC Converter Topologies 

• Maintaining efficiency across 
load voltages is difficult 

• Output current capability is 
limited 

Linear (LDO) 
Regulators 

Switched  
Capacitor 

Converters 

Fully integrated   

High efficiency X  

Voltage Scalability  X 

VOUT

VIN

C

Φ1 Φ2

Φ2 Φ1

1) Y. Ramadass et al., “A 0.16mm2 Completely On-Chip Switched-Capacitor  DC-DC Converter 

Using Digital Capacitance Modulation for LDO Replacement in 45nm CMOS ,” IEEE ISSSC, 2010  

2) Michael Seeman et al.,  “A Comparative Analysis of Switched-Capacitor and Inductor-Based DC-

DC Conversion Technologies,” Control and Modeling for Power Electronics, 2010 
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DC-DC Converter Topologies 

• Needs an external inductor 
• Can achieve very high 

efficiency 
• Wide range of output 

voltages 
 

Linear (LDO) 
Regulators 

Switched  
Capacitor 

Converters 

Inductor-based 
Switching 

Converters 

Fully integrated   X 

High efficiency X   

Voltage Scalability  X  

VOUT

LDIGITAL

CONTROL

VIN

VREF

COUT



 

 

 

 

 

 

 

 

 

• Input voltage: 2V – 5.5V 

• Output programmable between 1.3V – 5.25V 

• Up to 50mA load current  

TPS62736 Buck Converter Architecture 
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http://www.ti.com/product/tps62736 



TPS62736 Buck Converter Efficiency 

• Maintains 
constant efficiency 
from 20µA to 50mA 
 

• >80% down to 
10µA 
 

• IQ = 360nA 
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Battery Management and Peripherals 
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BQ25570 Essential Peripheral Circuits 
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CHG_EN

BGP_EN

POR / Bias 

Current 

Generator
2kHz 

Osc.

POR CLK

State 

Machine BattMgmt_EN

MPPT_CLK

Bias Currents

Bandgap
OT

BGP

Battery 

Manager

UV

OV

VBAT_OK

VOUT_REF

BUCK_ENUV

OV

VBAT_OK

OT

Protect the storage element, manage the IC and 

indicate level of stored energy 
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Battery Mgmt. Architecture  

EN 

OVS 

 

 

 

 

 

 

 

 

• Resistor programmable UV, OK, OV 

• Cycle repeats every 64ms 

• Duty cycled and sampled reference 



BQ25570 Quiescent Current 

• VBAT = 3V 

 

• Overall Quiescent 
current : 480nA 

 

• Battery leakage  
below UV = 1nA 

 

Currents in nA 
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BQ25570 System Startup 

VSTOR 

VBAT_OK 

VBAT 

VIN = 330mV 

Switch between 

VSTOR and VBAT 

closes at UV 

Open circuit 

voltage sampling 

for MPPT 
Cold Start Charger On OV 

Battery at 

OV = 3.3V 

Battery OK 

goes high 
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Computing Architecture with Energy Harvesting 

• Rapid transition from sleep to active 

[M. Qazi, ISSCC 2013] 



Energy Harvesting with Battery Backup 

http://www.ti.com/product/bq25505 

Autonomous handoff between primary and secondary storage 



Energy Combining and Inductor Sharing 

• A single inductor is shared between multiple harvesters 

and output voltage regulators 

S. Bandyopadhyay, [VLSI Symposium 2013] 

A. Shrivastava, [VLSI Symposium 2014] 



Indoor Light Harvesting for Bluetooth LE (BLE) Beacons 
 

Required Energy Budget Calculation 

Solar cell provides 400µW 

at 450Lux  
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Summary 

 

• Advances in circuit design techniques and architectures 
have made it possible for electronic systems to be 
completely self-powered 

• Energy harvesting sources differ in characteristics from 
conventional batteries requiring specialized interface 
circuits 

• Optimized energy processing circuits are crucial to manage 
the ultra-low power levels output by energy harvesters  

• Holistic optimization of the complete system from the 
energy sources to the load circuits is key to building and 
powering a successful IoT system 


