Powering the internet of things

Yogesh Ramadass

Texas Instruments

Trends in low-power electronics

- Issues Size, weight, operating lifetime
- Energy efficiency of IC's is crucial

IoT Node for Monitoring

Component	Power	Comments	Sensors Energy Subsystem
Inst. Amplifier [Verma, VLSI09]	3.5µW	1V V _{DD} , 1.3µVrms input referred noise	Interface & DC-DC
ADC [Yaul, ISSCC14]	3.7µW	1V V _{DD} , 450kS/s, 9.8ENOB	Analog Front-End Analog Front-End Processor RAM CPU H
16b µ-cont [Kwong, ISSCC08]	2.72µW	0.5V V _{DD} ,128kb SRAM, 100kHz	 Power consumption of building blocks steadily decreasing
Radio [CC 2550]	33.6mW (active)	3V V _{DD} , 2.4GHz, -12dBm P _{OUT}	 Low voltage operation, multi-cores, local processing of information,
			aggressive duty cycling

LSB-first SAR ADC for Low-Activity Signals

ECG Signal, 1 kS/s

Vibration Signal, 5 kS/s

Range is given for best case (DC) and worst case (fullscale Nyquist sinusoid) inputs.

[F. Yaul, ISSCC 2014]

I SB-first	predictive a	algorithm	for reduced	power
		argontinn		

0.18µm Technology Unit Capacitor (fF) 72 1.0 0.6 0.5 Supply Voltage (V) Sample Rate (Hz) 450k 4k 16k ENOB (bit) 9.82 9.55 9.73 Power (W) 3.7–13µ 47–170n 8.7-31n FoM (fJ) 9.1 - 353.5 - 202.9-17

Reduced radio consumption

Epileptic Seizure Onset Detection

	Conventional- Wireless EEG	Using Local Processing
Capture	75 μW	75 μW
Digital processing		2 µW
Radio	1733 µW	43 µW
Total	1808 µW	120 μW

Computation vs. Communication Trade-off

[N. Verma, VLSI Circuits Symposium 2009]

Self-Powered Applications

Low data rate, low duty cycle, ultra-low power

Outline

- Energy Sources and Characteristics

 Energy Harvesting System
 Solar
 Thermal
 Vibration
- Energy Storage Options
- Energy Management Circuits
 - □ Chargers
 - □ DC/DC Converters
 - Battery Management
 - □ Peripherals
- Summary

Battery Operated System

- Battery is an energy source
- System needs to be ON only when the load demands it

Energy Harvesting System

Energy harvesters are power sources

Harvesting Light Energy

*US Department of Energy

- Incident light generates electron-hole pairs
- I_{SC} proportional to light intensity

Conditions	Power density
Indoor	10µW/cm ²
Outdoor	10mW/cm ²

Common Solar Cell Types

M. Gratzel, "*Photovoltaic and photoelectrochemical conversion of solar energy*," Philosophical Trans. Royal Society A, 2007

Output power curves with light intensity

Thermoelectric Energy Harvesters

- One p-n leg generates ~ 0.2mV/K
- Open-circuit voltage proportional to temperature difference across TEG

TEG Characteristics

[Tellurex]

- Tellurex G1-1.0-127-1.27
- S = 23mV/K; $R_T = 5\Omega$

TEG Characteristics

- Micropelt MPG-D751
- S = 155mV/K; $R_T = 300\Omega$

Body Heat Powered Electronics

For low-power wearable electronics

Mechanical Vibration Harvesters

Vibration-to-Electric Energy

Piezoelectric Micro-Power Generators

Power Converter

Sang-Gook Kim (MIT)

10µW -100µW generated

Vibrations Power Distributed Sensor Devices (Battery-less Operation)

e-Textiles with Wireless Power/Data Transfer

		2 1mm	Nachik	et Desai, ISS	SCC 2013	
Conditions	Power density					
Near field	5mW/cm ²	Expection Bank () Under Real Capacitor Bank () Under Real Over 1 Under Real Over 1 Under Real Over 1				
Far field	<10µW/cm ²					
		-Textiles Shirt Inductive Link	Power	Data		
	Base Station	Adhesive Inductor	Fabric Patch [《]		Body	
		Sensor	rNode 🚽		ő	

Network of diverse, remotely-powered sensors wirelessly linked to eTextiles

Energy Buffer

- Accumulate input power
- Provide peak output power
- Smooth out input, output power imbalances

	Conventional Batteries
Recharge Cycles	100s
Self Discharge	Moderate
Charge Time	Hours
Impedance	Low - High
Physical Size	Large
Capacity	0.3-2500mAH

- NiCd, NiMH, Li chemistries
- AA, AAA batteries have high capacity, low internal impedance, higher self discharge
- Li coin cells have low capacity, high internal impedance, smaller form factor

	Conventional Batteries	Thin Film Batteries
Recharge Cycles	100s	5k-10k
Self Discharge	Moderate	Negligible
Charge Time	Hours	Minutes
Impedance	Low - High	High
Physical Size	Large	Small
Capacity	0.3-2500mAH	12-2200µAH

- Solid-state LiPON electrolyte
- Higher output currents compared to coin cells
- Extremely low self-discharge
- Variety of form factors, intrinsically safe, high temp.

	Conventional Batteries	Thin Film Batteries	Supercaps
Recharge Cycles	100s	5k-10k	Millions
Self Discharge	Moderate	Negligible	High
Charge Time	Hours	Minutes	Sec-Minutes
Impedance	Low - High	High	Low
Physical Size	Large	Small	Medium
Capacity	0.3-2500mAH	12-2200µAH	10-100µAH

- Supports high peak output currents
- Very high leakage currents
- Wide range of operating temperature

Duty Cycle Impact on Current

$$I(avg) = Iactive * D + Isleep * (1-D)$$

Energy Processor

Energy Mgmt. IC -BQ25570

http://www.ti.com/product/bq25570

BQ25570 Charger Architecture

- Synchronous boost converter with input regulation
- 80mV 4V input voltage
- 10µA 100mA input current

BQ25570 Charger Efficiency

- Single cell solar operation in indoor light (200 lux)
- Harvesting from thermoelectric generators
 Eff Vs lin
 Eff Vs Vin

- 35% efficiency with 10µA input at 0.5V
- > 80% above 100µA.

- 38% efficiency with 100mV input at 10mA
- >80% above 0.5V

Revisiting solar MPP curves

Output power levels within 0.5%

BQ25570 Maximum Power Point Tracking

- Open circuit voltage based MPPT
- Charger periodically turned off using **EN** signal
- IC samples and holds fraction of OCV on external capacitor
- Charger regulates input to value held on capacitor

Maximum Power Point Tracking

330mV Cold Start

- Function : Start system with depleted storage
- Architecture : Input powered boost converter

K. Kadirvel, ISSCC, 2012

Regulator

DC-DC Converter Topologies

	Linear (LDO) Regulators	
Fully integrated	\checkmark	
High efficiency	X	
Voltage Scalability	\checkmark	

- Linear loss in efficiency
- Compact and easy to control

$$\eta = \frac{V_{OUT}}{V_{IN}}$$

M. Al-Shyoukh et al., "A Transient Enhanced Low-Quiescent Current Low-Dropout Regulator with Buffer Impedance Attenuation" IEEE JSSC, Aug 2007

DC-DC Converter Topologies

	Linear (LDO) Regulators	Switched Capacitor Converters	
Fully integrated	\checkmark	\checkmark	
High efficiency	X	\checkmark	
Voltage Scalability	\checkmark	X	

- Maintaining efficiency across load voltages is difficult
- Output current capability is limited
- 1) Y. Ramadass et al., "A 0.16mm² Completely On-Chip Switched-Capacitor DC-DC Converter Using Digital Capacitance Modulation for LDO Replacement in 45nm CMOS," IEEE ISSSC, 2010
- 2) Michael Seeman et al., "A Comparative Analysis of Switched-Capacitor and Inductor-Based DC-DC Conversion Technologies," Control and Modeling for Power Electronics, 2010

Subthreshold MSP430 Microcontroller

Joyce Kwong et. al, ISSCC 2008

DC-DC Converter Topologies

	Linear (LDO) Regulators	Switched Capacitor Converters	Inductor-based Switching Converters
Fully integrated	\checkmark	\checkmark	X
High efficiency	X	\checkmark	$\sqrt{\sqrt{1}}$
Voltage Scalability	\checkmark	X	\checkmark

- Needs an external inductor
- Can achieve very high efficiency
- Wide range of output voltages

TPS62736 Buck Converter Architecture

- Input voltage: 2V 5.5V
- Output programmable between 1.3V 5.25V
- Up to 50mA load current

TPS62736 Buck Converter Efficiency

Efficiency vs. Output Current (VIN = 3V)

- Maintains constant efficiency from 20µA to 50mA
- >80% down to 10µA

Battery Management and Peripherals

BQ25570 Essential Peripheral Circuits

Protect the storage element, manage the IC and indicate level of stored energy

Battery Mgmt. Architecture

- Resistor programmable UV, OK, OV
- Cycle repeats every 64ms
- Duty cycled and sampled reference

BQ25570 Quiescent Current

Currents in nA

BQ25570 System Startup

Computing Architecture with Energy Harvesting

Rapid transition from sleep to active

[M. Qazi, ISSCC 2013]

Energy Harvesting with Battery Backup

http://www.ti.com/product/bq25505

Autonomous handoff between primary and secondary storage

Energy Combining and Inductor Sharing

 A single inductor is shared between multiple harvesters and output voltage regulators

Indoor Light Harvesting for Bluetooth LE (BLE) Beacons

Required Energy Budget Calculation

	CURRENT	VOLTAGE	POWER	TIME	ENERGY	ENERGY (RMS)
Event	mA	V	mA.V	ms	uW.s	uW.s
BLE Beacon Region 1	32	3.1	99.2	0.2	19.84 ⁽¹⁾	14.03
BLE Beacon Region 2	7.5	3.1	23.25	0.6	13.95	13.95
BLE Beacon Region 3	7.5	3.1	23.25	0.4	9.30	9.30
BLE Beacon Region 4	20	3.1	62	0.6	37.20	37.20
BLE Beacon Region 5	7.5	3.1	23.25	1.4	32.55	32.55
LED Blinking	0.45	3.1	1.395	50	69.75	69.75
CC2541 Sleep	0.001	3.1	0.0031	946.8	2.94	2.94
		Total Energy Budget				179.71 uW.s

⁽¹⁾ Note that for the BLE Beacon Region 1, which is a high energy current pulse at the beginning, an RMS value has been used to realistically reflect the energy usage.

Solar cell provides 400µW at 450Lux

Summary

- Advances in circuit design techniques and architectures have made it possible for electronic systems to be completely self-powered
- Energy harvesting sources differ in characteristics from conventional batteries requiring specialized interface circuits
- Optimized energy processing circuits are crucial to manage the ultra-low power levels output by energy harvesters
- Holistic optimization of the complete system from the energy sources to the load circuits is key to building and powering a successful IoT system