
University Research in
Hardware Security

Ruby B. Lee
Princeton University

HotChips Hardware Security Tutorial
August 10, 2014

Outline

Hardware Security:

① Hardware-enhanced security

 Protecting against attacks on software

② Secure Hardware

Protecting against attacks on hardware

We summarize different research areas in each category, and
illustrate with one example in each category.

2 Ruby Lee, Princeton University

Hardware-enhanced Security Research

• Hardware enabled isolation
– Static versus dynamic partitioning of resources for trusted versus untrusted

software
– Defend from “attacks from below”, e.g., untrusted OS or HV or both

• Secure Processors (Cryptographic access control and isolation)
– Secure execution environment for access to keys and decrypted information
– Hardware support for Secure key generation, management and storage

• Master keys and key derivation
• Secure storage
• True Random Number Generators (TRNG)
• Physically Unclonable Functions (PUF)

– Mitigate information leakage thru covert channels and side channels

• Dynamic Information Flow Tracking (DIFT)
– Track trusted or tainted data or control
– Explicit versus implicit information flow tracking
– Minimize false positives (usability) and false negatives (security)

3 Ruby Lee, Princeton University

Hardware-enhanced Security Research

• Attestation and Trust Evidence
– How can the system assure the user that his desired security properties are

being provided?
– What information can a system collect to provide evidence so that the user

can “trust” it?

• Moving Target Defense
– Randomization and other techniques that thwart attack strategies that

depend on known vulnerabilities, fixed mappings or locations, or predictable
values

• Software-hardware security verification
– Combine software, hardware and network protocol security verification
– Scale to realistic systems (with accurate abstractions)
– Compose security verification of subsystems

• Security Metrics
– How can we meaningfully evaluate if one system is more secure than another,

for some security property?

4 Ruby Lee, Princeton University

Secure Hardware Research
• Detect and Mitigate Side-Channel Attacks

– Leak critical information through correctly implemented hardware subsystems
– HW or SW attacks on hardware resources

• Unlike SW vulnerabilities, the HW is functioning correctly --but leaking secrets!

– Many types of side-channels: Power, timing, acoustic, caches, memory bus, branch
prediction, E&M, fault-induced, etc.

• Memory integrity (physical attacks)
– What if attacker changes the information written at a given memory address?
– Faster Memory Integrity Trees, e.g., Bonzai Merkle tree
– Memory integrity trees for multicore systems

• Supply chain Security
– What if design is changed at some stage of chip implementation, fabrication or delivery?
– Fake chips, old chips with limited lifetimes. Malicious chips

• Hardware Trojans
– Detection and mitigation

• Security of CAD tools that generate and verify hardware chip designs
• IPcores and SOC security and trustworthiness

5 Ruby Lee, Princeton University

Cyber-Physical systems

• Security of physical systems controlled through cyberspace
– Attacks on both software and physical components (including

physical structures beyond the computer’s hardware)
– Critical infrastructures, like power-grid, transportation, water
– Home security systems
– Medical devices
– Appliances in IoT (Internet of Things)
– etc.

• Security with emerging technology in computers
– NVRAM as main memory
– 3D chips
– etc.

6 Ruby Lee, Princeton University

Secure Hardware Design

Example: Secure caches
that do not leak information

Consider recent outcry over
Heartbleed bug

• Heartbeat is a protocol for ensuring that a service or
computer is “alive”

• However, software bug in implementing heartbeat
extension in TLS/SSL in OpenSSL can be exploited to
read up to 64 Kbytes of memory (per heartbeat)
– from a client or server using a vulnerable OpenSSL version

• What is leaked?
– Primary key material (encryption keys, signing keys)
– Secondary key material (user’s name and password)
– Protected content
– Collateral (e.g., memory addresses, canaries, info to bypass

defenses - for this session)

 8 Ruby Lee, Princeton University

Remaining Vulnerabilities

But after software bug is fixed for heartbleed,
the crown jewels of primary key material are
still vulnerable to side-channel attacks on
hardware
 -- especially software side-channel attacks
on hardware caches

All current processors with caches are
vulnerable – from embedded devices to
cloud servers

9 Ruby Lee, Princeton University

The Problem -- and the Solution

• Problem:
– Correctly functioning hardware caches leak secret

information through cache side-channel attacks
• Nullifies strong cryptography and software isolation

– But hardware caches essential for computer performance

– Hardware problem - very hard/slow for SW-only solutions

• Hardware Solution:
– Secure Cache: thwart attacker, without performance hit

– Fits in current ecosystem, works for legacy code

• Benefits:
– Built-in; software and performance transparent

10 Ruby Lee, Princeton University

Mitigating Cache-based Attacks
• Existing caches: fixed memory-

to-cache mapping

cache

Victim
accesses
line#4

Attacker
detects a
miss at
line#4

cache

Victim
wishes to

access
line#4

Attacker
detects a
miss at
random
line#7

Randomly select
a cache line to

evict;
replacement is
security-aware

• Newcache Solution: dynamic
random mapping gives
attacker no information

The attacker now knows that the victim
accessed cache line #4

By randomly selecting the line actually evicted,

no information on which line is accessed by
the victim can be learned by the attacker.

11 Ruby Lee, Princeton University

Newcache Architecture

• Secure cache with
same performance as
existing SA caches!

• novel address
decoder provides
dynamic, randomized
memory-to-cache
mapping

• longer cache index
improves
performance

• Holistic design:
security,
microarchitecture
and circuit.

Address

Data ArrayTag Array

=?

=[LNreg0]?

Address

Decoder

Tag Hit/Miss Data Out

n+k

LNregs

Index bitsTag bits

0

s-1

id

=[LNregi]? i

=[LNregs-1]?

Context

RMT ID
d

Index Hit/Miss

P V

m

12 Ruby Lee, Princeton University

• 32kB Newcache

• 32kB 8-way set
associative cache

– 8-way tag
check

– Only 1 bank of
data array
accessed to
save power

 Newcache Testchip

Newcache improves security without degrading
performance or power

Fully Associative

and High Set-

Assoc. Cache

Direct-

Mapped

Cache

Newcache

Miss rate lowest high lowest

Access time longer shortest short

Power per

access

higher lowest low

Overall Power higher low lowest

Security (none) (none) strongest

Shortest or lowest is best

14 Ruby Lee, Princeton University

Secure cache - summary

• Example of using Moving Target Defense for Secure
Hardware design (DHS/AFRL project)
– Hardware randomizes memory-to-cache mapping

• Surprising result: need not trade off performance or
power for better security
– Contrary to conventional wisdom
– System performance verified for smartphone and cloud

server benchmarks
– Security verified with known and new targeted attacks
– Physical latency and power verified with test-chip

• Deployment-ready: Secure Newcache can replace
existing caches

 15 Ruby Lee, Princeton University

Hardware-enhanced Security
Research

e.g., What is a “general-purpose”
security architecture?

Bastion’s Goals
• General-Purpose HW-SW Security solution

– Use software protection mechanisms (for flexibility), but use hardware
to protect these.

• Finer-Granularity Isolation, within same context

– Protect trusted software modules within same virtual address space as
untrusted app or OS

• Scalability

– Run multiple mutually-suspicious trust domains together

• More aggressive threat model

– O.S. as a potential adversary

– Physical attacks in addition to software attacks

• Security when needed

– Dynamically set up secure compartments for trusted code, rather than
sandbox for untrusted code

• Resilient execution of security-critical tasks

• Provide trust evidence

17 Ruby Lee, Princeton University

App. 1 App. 2

Windows XP OS

Hardware

Processor

chip Main

Memory

Mem.

I/O

Ctrlr

Disk

Bastion security architecture

Hypervisor

A

A

B

B

C

C

Processor

chip

= Untrusted = Trusted

Linux OS

App. 3 App. 4

Champagne, D., Lee, R.B., "Scalable Architectural Support for Trusted Software”,
IEEE Intl. Symp. on High-Performance Computer Architecture (HPCA), Jan. 2010.

Virtual Machine 1 Virtual Machine k

18 Ruby Lee, Princeton University

http://palms.ee.princeton.edu/publications/author/Champagne
http://palms.ee.princeton.edu/publications/author/Lee
http://palms.ee.princeton.edu/node/352

Hardware-enhanced Security
for more aggressive Threat Models

Trusted HV,
Untrusted OS

Trusted HV,
Trusted OS

HV HV

HW HW

OS

a
p
p

OS

a
p
p

OS

a
p
p

OS

a
p
p

... ...

trusted untrusted

a
p
p

a
p
p

TSM a
p
p

a
p
p

TPM,
Trustzone secure world

Fine-grained Trusted Software Modules
e.g., Bastion

Today Tomorrow? Layer-skipping trust chains
 with HW trust anchors

TPM

Defeats attacks
from below;
More Resilient.

19 Ruby Lee, Princeton University

Scalable Secure Storage (SS)
sealed to each Trusted Software Module or Hypervisor

Microprocessor Chip

storage_key reg. storage_hash reg.

Hypervisor
Secure Storage (SS)

SS key 1 SS hash 1mod. M1 identity
M1

SS
SS key 2 SS hash 2mod. M2 identity

M2

SSSS key n SS hash nmod. Mn identity

...

Mn

SS

...

20 Ruby Lee, Princeton University

Trustzone: industry state-of-art

• Trustzone Advantages
– Industry infrastructure and software ecosystem
– Excellent for infrequent and/or self-contained security-critical tasks

• e.g., Secure log-in; Modifying Platform configuration parameters; Establishing new
Public-private key pair; BYOD (complete separation).

• But some issues:
– One Secure World insufficient

• If SecureOS has to be more complex, its vulnerabilities will increase
– Performance degradation with frequent world switches
– Loss of visibility into App or Normal OS context in Normal World
– Security of data collected (or events triggered) by software monitor in

Normal World typically cannot be trusted
– No protection from side-channel attacks

• Enhance Trustzone by providing Secure execution environment for
trusted software in Trustzone’s Normal World (e.g., with Bastion).

21 Ruby Lee, Princeton University

Bastion: security mechanisms

• Hypervisor Protection
– Secure Launch of Hypervisor
– Protecting Hypervisor at Runtime

• Trusted Software Module Protection
– Secure Launch
– Secure Virtual-to-Physical Memory Mapping
– Secure Physical Memory
– Secure Inter-Module Control Flow

• Trusted Computing Primitives
– Secure Storage

• sealed to each Trusted Software Module

– Processor-based Tailored Attestation
• Provide user with trust evidence of secure execution

22 Ruby Lee, Princeton University

Applications

• Security Monitor
– Application-level security monitors in same address space as app.

• Protect the protection mechanisms implemented in software
– e.g., OS based rootkit detectors

• Policy-protected Objects
– Protected SW module can enforce arbitrary security policies for

access to a protected object in secure storage

• application plug-ins
• e-banking browser plug-in,
• DRM media player plug-in

• Security-critical device drivers
• e.g., HDCP for secure display hardware

• Dynamic binary translators

23 Ruby Lee, Princeton University

Hardware Security Research in
Cloud Computing, Smartphones and Sensor-nets

Secure live

VM migration

and cloning

DataSafe
Prevent data leakage,

unvetted apps on secure data

Trust

Monitor

Secure Cloud Server

Architectures

VM security

life-cycle

Policy Validation,

Dynamic

Resource Allocation

and

Security SLAs

NoHype
Virtualization without the

use of hypervisor for

enhanced security

Bastion
Secure execution enclave for

trusted software modules

New Cache
Randomized memory

mapping to prevent side

channel attacks

Hyperwall
Secure hardware enhanced

virtualization for untrusted

hypervisor

Moving Target

Defense

Secure Verification and Attestation

(Security POST, Runtime Security

Verification)

Secure Verification and Response

Mechanisms

Security on Demand

in

Cloud Computing

Security for

Smartphones, Sensors

Internet of Things

Secure sensor

design

secure sensor

protocols

Smartphone

 security

C
lo

u
d

 I
n

te
r
fa

c
e

secure data

exchange protocols

Cloud Computing

Infrastructure

Lee PALMS Lab, 2013. 24 Ruby Lee, Princeton University

Conclusions

• New Secure Hardware design approaches
– e.g., Secure Newcache uses Moving Target Defense to thwart

cache side-channel attacks, without degrading performance

• Design Hardware to enhance Software Security
– e.g., Bastion: Hardware protects flexible software security

monitors in same context as untrusted app being monitored
– Can enhance Trustzone’s security in its Normal World

• Many fertile security research areas in cloud computing,
smartphones, sensors, IoT, multicore, SOCs, FPGAs, etc.

• Hardware security architecture should project into the
future, cover different threat models, and provide proactive
security.

25 Ruby Lee, Princeton University

Sample References for further reading
(all that can fit on 1 slide!)

Secure Processors
• D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz. Architectural Support for Copy and Tamper Resistant Software. ASPLOS, November 2000.
• G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas. Design and Implementation of the aegis Single-Chip Secure Processor Using Physical Random Functions. ISCA, June 2005.
• R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang, “Architecture for Protecting Critical Secrets in Microprocessors,” ISCA, June 2005.
• J. Dwoskin, R. B. Lee, "Hardware-rooted Trust for Secure Key Management and Transient Trust", ACM Conference on Computer and Communications Security (CCS), October 2007.
• D. Champagne, R.B. Lee, "Scalable Architectural Support for Trusted Software", HPCA, Jan. 2010.
• J. Dwoskin, D. Xu, J. Huang , M. Chiang R.B. Lee, "Secure Key Management Architecture Against Sensor-node Fabrication Attacks", Globecomm, Nov 2007.
• D. Lie, J. Mitchell, C. Thekkath and M. Horowitz. Specifying and Verifying Hardware for Tamper-Resistant Software. IEEE Symposium on Security and Privacy. May 2003.
• D. Lie, C. Thekkath, and M. Horowitz. Implementing an untrusted operating system on trusted hardware. ACM Symposium on Operating Systems Principles, Oct. 2003.
• R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. Enlisting hardware architecture to thwart malicious code injection. International Conference on Security in Pervasive Computing, 2003.
• S. W. Smith, E. R. Palmer, S. H. Weingart, Using a High- Performance, Programmable Secure Coprocessor. Intl. Conf. on Financial Cryptography, pp.73-89, 1998.
• S. W. Smith and S. H. Weingart,. Building a High- Performance, Programmable Secure Coprocessor. Computer Networks, 31(8), pp. 831-860, April 1999.
• D. Kirovski, M. Drinic, and M. Potkonjak, Enabling Trusted Software Integrity. ASPLOS, October 2002.
• J. D. Tygar and B. Yee. Dyad: A System for Using Physically Secure Coprocessors. Carnegie Mellon University Technical Report CMU-CS-91-140R, May 1991.
Secure Cache (Cache Side-Channel mitigation)
• Z. Wang and R.B. Lee. A Novel Cache Architecture with Enhanced Performance and Security. MICRO, 2008.
• Z. Wang and R.B. Lee. New Cache Designs for Thwarting Software Cache-based Side-Channel Attacks. ISCA, 2007.
• Z. Wang and R.B. Lee. Covert and Side Channels due to Processor Architecture. Annual Computer Security Applications Conference (ACSAC), 2006.
• L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, D. Ponomarev. Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks. ACM Transactions on Architecture and

Code Optimization (TACO) Vol 8 Issue 4, Jan 2012.
Memory Integrity Tree
• Ralph C. Merkle. Protocols for public key cryptography. IEEE Symposium on Security and Privacy, 1980.
• B. Rogers, S. Chhabra, Y. Solihin, M. Prvulovic. Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly. MICRO 2007.
• G. Suh, D. Clarke, M. van Dijk, S. Devadas, Caches and Hash Trees for Efficient Memory Integrity. HPCA, 2003.
• G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Efficient Memory Integrity Verification and Encryption for Secure Processors. MICRO, 2003.
• Eric Hall and Charanjit S. Jutla. Parallelizable Authentication Trees . In Cryptology ePrint Archive.
• B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, Y. Solihin, Single-Level Integrity and Confidentiality Protection for Distributed Shared Memory Multiprocessors, HPCA 2008.
• Elbaz, R., Champagne, D., Gebotys, C., Lee, R.B., Potlapally, N., Torres, L., Hardware Mechanisms for Memory Authentication: A Survey of Existing Techniques and Engines, Transactions on

Computational Science IV, Lecture Notes in Computer Science (LNCS), issue 5340, pp. 1-22, March 2009.
Crypto Acceleration in Processors
• R.B. Lee, R.B., Y. Chen. Processor Accelerator for AES. IEEE Symposium on Application Specific Processors, June 2010.
• W. Shi, H.H.S. Lee, M. Ghosh, C. Lu, A. Boldyreva. High Efficiency Counter Mode Security Architecture via Prediction and Precomputation. ISCA 2005.
Dynamic Information Flow Tracking
• M. Dalton, H. Kannan, C. Kozyrakis, Raksha: A Flexible Information Flow Architecture for Software Security. ISCA 2007.
• N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hardware enforcement of application security policies using tagged memory. OSDI, 2008.
• M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T. Sherwood, “Complete Information Flow Tracking from the Gates Up,” ASPLOS 2009.
• N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, , and D. I. August. RIFLE: An architectural framework for user-centric information-flow

security. MICRO, 2004.
• F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou,and Y. Wu. LIFT: A low-overhead practical information flow tracking system for detecting security attacks. MICRO, 2006.
• G. E. Suh, J. Lee, and S. Devadas. Secure Program Execution via Dynamic Information Flow Tracking. ASPLOS, 2004.
• Y. Chen, P. Jamkhedkar and R. B. Lee. A Software-Hardware Architecture for Self-Protecting Data, ACM Conference on Computer and Communications Security (CCS), October 2012.
Hardware Trojans
• A. Waksman, S. Sethumadhavan: Silencing Hardware Backdoors. IEEE Symposium on Security and Privacy 2011.
• A. Waksman, S. Sethumadhavan: Tamper Evident Microprocessors. IEEE Symposium on Security and Privacy, 2010

26 Ruby Lee, Princeton University

http://palms.ee.princeton.edu/node/270
http://palms.ee.princeton.edu/node/236
http://palms.ee.princeton.edu/node/236
http://palms.ee.princeton.edu/node/236
http://palms.ee.princeton.edu/node/352
http://www.eecg.toronto.edu/~lie/papers/lie-oakland2003.pdf
http://www.eecg.toronto.edu/~lie/papers/lie-oakland2003.pdf
http://www.eecg.toronto.edu/~lie/papers/lie-oakland2003.pdf
http://dl.acm.org/author_page.cfm?id=81474703004&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://dl.acm.org/author_page.cfm?id=81100506794&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://dl.acm.org/author_page.cfm?id=81375618267&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://dl.acm.org/author_page.cfm?id=81300460101&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://dl.acm.org/author_page.cfm?id=81300460101&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://dl.acm.org/author_page.cfm?id=81300460101&coll=DL&dl=GUIDE&CFID=519950264&CFTOKEN=78700236
http://palms.ee.princeton.edu/publications/author/Elbaz
http://palms.ee.princeton.edu/publications/author/Champagne
http://palms.ee.princeton.edu/publications/author/Gebotys
http://palms.ee.princeton.edu/publications/author/Lee
http://palms.ee.princeton.edu/publications/author/Potlapally
http://palms.ee.princeton.edu/publications/author/Torres
http://palms.ee.princeton.edu/node/343
http://palms.ee.princeton.edu/node/369
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Waksman:Adam.html
http://www.informatik.uni-trier.de/~ley/db/conf/sp/sp2011.html#WaksmanS11
http://www.informatik.uni-trier.de/~ley/db/conf/sp/sp2011.html#WaksmanS11
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Waksman:Adam.html

Speaker’s Bio

Ruby B. Lee is the Forrest G. Hamrick Professor of Electrical Engineering at
Princeton University. Her current research is in security-aware computer
architecture, secure caches that do not leak information, secure cloud computing,
secure virtual machines, smartphone security, running unvetted applications on
sensitive data, and security verification. She has also done extensive past work on
cryptographic acceleration, very fast and novel bit permutation instructions,
secure processors and hardware trust anchors. Prior to Princeton, Lee served as
chief architect at Hewlett-Packard for processor architecture, multimedia
architecture, and then security architecture. She was a founding architect of HP’s
PA-RISC architecture and instrumental in the initial design of several generations of
PA-RISC processors for HP’s business and technical computers. She helped in the
widespread adoption of multimedia in commodity products by pioneering
multimedia support in microprocessors and introducing the first real-time
software video in low-end products. She was co-leader of the Intel-HP multimedia
architecture team for 64-bit microprocessors. She created the first security
roadmap for enterprise and e-commerce security for HP. Lee is an ACM Fellow and
IEEE Fellow, and holds over 120 U.S. and international patents. Known as a
foremost hardware security expert, Lee is often asked to serve on national
committees for improving cyber security research, such as being co-leader of the
U.S. National Cyber Leap Year Summit and co-authoring the National Academies’
study mandated by Congress for improving cyber security research.

27

