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Outline 

Hardware Security: 

① Hardware-enhanced security 

 Protecting against attacks on software 

② Secure Hardware 

Protecting against attacks on hardware 

 
We summarize different research areas in each category, and 
illustrate with one example in each category. 
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Hardware-enhanced Security Research 

• Hardware enabled isolation 
– Static versus dynamic partitioning of resources for trusted versus untrusted 

software 
– Defend from “attacks from below”, e.g., untrusted OS or HV or both 

• Secure Processors (Cryptographic access control and isolation) 
– Secure execution environment for access to keys and decrypted information 
– Hardware support for Secure key generation, management and storage 

• Master keys and key derivation 
• Secure storage 
• True Random Number Generators (TRNG) 
• Physically Unclonable Functions (PUF) 

– Mitigate information leakage thru covert channels and side channels 

• Dynamic Information Flow Tracking (DIFT) 
– Track trusted or tainted data or control 
– Explicit versus implicit information flow tracking 
– Minimize false positives (usability) and false negatives (security) 
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Hardware-enhanced Security Research 

• Attestation and Trust Evidence 
– How can the system assure the user that his desired security properties are 

being provided? 
– What information can a system collect to provide evidence so that the user 

can “trust” it? 

• Moving Target Defense 
– Randomization and other techniques that thwart attack strategies that 

depend on known vulnerabilities, fixed mappings or locations, or predictable 
values 

• Software-hardware security verification 
– Combine software, hardware and network protocol security verification 
– Scale to realistic systems (with accurate abstractions) 
– Compose security verification of subsystems 

• Security Metrics 
– How can we meaningfully evaluate if one system is more secure than another, 

for some security property? 
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Secure Hardware Research 
• Detect and Mitigate Side-Channel Attacks 

– Leak critical information through correctly implemented hardware subsystems 
– HW or SW attacks on hardware resources 

• Unlike SW vulnerabilities, the HW is functioning correctly --but leaking secrets! 

– Many types of side-channels: Power, timing, acoustic, caches, memory bus, branch 
prediction, E&M, fault-induced, etc. 

• Memory integrity (physical attacks) 
– What if attacker changes the information written at a given memory address? 
– Faster Memory Integrity Trees, e.g., Bonzai Merkle tree 
– Memory integrity trees for multicore systems 

• Supply chain Security 
– What if design is changed at some stage of chip implementation, fabrication or delivery? 
– Fake chips, old chips with limited lifetimes. Malicious chips 

• Hardware Trojans 
– Detection and mitigation 

• Security of CAD tools that generate and verify hardware chip designs 
• IPcores and SOC security and trustworthiness 
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Cyber-Physical systems 

• Security of physical systems controlled through cyberspace 
– Attacks on both software and physical components (including 

physical structures beyond the computer’s hardware) 
– Critical infrastructures, like power-grid, transportation, water 
– Home security systems 
– Medical devices 
– Appliances in IoT (Internet of Things) 
– etc. 

• Security with emerging technology in computers 
– NVRAM as main memory 
– 3D chips 
– etc. 
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Secure Hardware Design 

Example: Secure caches  
that do not leak information  

 



Consider recent outcry over 
Heartbleed bug 

• Heartbeat is a protocol for ensuring that a service or  
computer is “alive” 

• However, software bug in implementing heartbeat 
extension in TLS/SSL in OpenSSL can be exploited to 
read up to 64 Kbytes of memory (per heartbeat)  
– from a client or server using a vulnerable OpenSSL version 

• What is leaked? 
– Primary key material (encryption keys, signing keys) 
– Secondary key material (user’s name and password) 
– Protected content 
– Collateral (e.g., memory addresses, canaries, info to bypass 

defenses - for this session) 
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Remaining Vulnerabilities 

But after software bug is fixed for heartbleed, 
the crown jewels of primary key material are 
still vulnerable to side-channel attacks on 
hardware 
 -- especially software side-channel attacks 
on hardware caches 
  
All current processors with caches are 
vulnerable – from embedded devices to 
cloud servers 
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The Problem -- and the Solution 

• Problem: 
– Correctly functioning hardware caches leak secret 

information through cache side-channel attacks 
• Nullifies strong cryptography  and software isolation 

– But hardware caches essential for computer performance 

– Hardware problem - very hard/slow for SW-only solutions 

• Hardware Solution: 
– Secure Cache: thwart attacker, without performance hit 

– Fits in current ecosystem, works for legacy code 

• Benefits: 
– Built-in; software and performance transparent 
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Mitigating Cache-based Attacks 
• Existing caches: fixed memory-

to-cache mapping 

 
cache 

Victim 
accesses 
line#4 

Attacker 
detects a 
miss at 
line#4 

cache 

Victim 
wishes to 

access 
line#4 

Attacker 
detects a 
miss at 
random 
line#7 

Randomly select 
a cache line to 

evict; 
replacement is 
security-aware 

• Newcache Solution: dynamic 
random mapping gives 
attacker no information 

The attacker now knows that the victim 
accessed cache line #4 

By randomly selecting the line actually evicted,  

no information on which line is accessed by 
the victim can be learned by the attacker. 
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Newcache Architecture 

• Secure cache with 
same performance as 
existing SA caches! 

• novel address 
decoder provides 
dynamic, randomized 
memory-to-cache 
mapping 

• longer cache index 
improves 
performance 

• Holistic design: 
security, 
microarchitecture 
and circuit. 
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• 32kB Newcache 

• 32kB 8-way set 
associative cache 

– 8-way tag 
check 

– Only 1 bank of 
data array 
accessed to 
save power 

 Newcache Testchip 



Newcache improves security without degrading 
performance or power                   

Fully Associative 

and High Set-

Assoc. Cache 

Direct-

Mapped 

Cache 

Newcache 

Miss rate lowest high lowest 

Access time longer shortest short 

Power per 

access 

higher lowest low 

Overall Power higher low lowest 

Security (none) (none) strongest 

Shortest or lowest is best 
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Secure cache - summary 

• Example of using Moving Target Defense for Secure 
Hardware design (DHS/AFRL project) 
– Hardware randomizes memory-to-cache mapping 

• Surprising result: need not trade off performance or 
power for better security 
– Contrary to conventional wisdom 
– System performance verified for smartphone and cloud 

server benchmarks 
– Security verified with known and new targeted attacks 
– Physical latency and power verified with test-chip 

• Deployment-ready: Secure Newcache can replace 
existing caches 
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Hardware-enhanced Security 
Research 

e.g., What is a “general-purpose” 
security architecture? 



Bastion’s Goals 
• General-Purpose HW-SW Security solution 

– Use software protection mechanisms (for flexibility), but use hardware 
to protect these. 

• Finer-Granularity Isolation, within same context 

– Protect trusted software modules within same virtual address space as 
untrusted app or OS 

• Scalability 

– Run multiple mutually-suspicious trust domains together 

• More aggressive threat model 

– O.S. as a potential adversary 

– Physical attacks in addition to software attacks 

• Security when needed 

– Dynamically set up secure compartments for trusted code, rather than 
sandbox for untrusted code 

• Resilient execution of security-critical tasks 

• Provide trust evidence 
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Hardware-enhanced Security 
for more aggressive Threat Models 
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Scalable Secure Storage (SS)  
sealed to each Trusted Software Module or Hypervisor 

Microprocessor Chip

storage_key reg. storage_hash reg.

Hypervisor 
Secure Storage (SS)
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Mn 

SS

...

20 Ruby Lee, Princeton University 



Trustzone:  industry state-of-art 

• Trustzone Advantages 
– Industry infrastructure and software ecosystem  
– Excellent for infrequent and/or self-contained security-critical tasks 

• e.g., Secure log-in; Modifying Platform configuration parameters; Establishing new 
Public-private key pair; BYOD (complete separation). 

• But some issues: 
– One Secure World insufficient 

• If SecureOS has to be more complex, its vulnerabilities will increase 
– Performance degradation with frequent world switches 
– Loss of visibility into App or Normal OS context in Normal World 
– Security of data collected (or events triggered) by software monitor in 

Normal World typically cannot be trusted 
– No protection from side-channel attacks 

• Enhance Trustzone by providing Secure execution environment for 
trusted software in Trustzone’s Normal World (e.g., with Bastion). 
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Bastion: security mechanisms 

• Hypervisor Protection 
– Secure Launch of Hypervisor  
– Protecting Hypervisor at Runtime 

• Trusted Software Module Protection 
– Secure Launch 
– Secure Virtual-to-Physical Memory Mapping 
– Secure Physical Memory 
– Secure Inter-Module Control Flow 

• Trusted Computing Primitives 
– Secure Storage  

• sealed to each Trusted Software Module 

– Processor-based Tailored Attestation 
• Provide user with trust evidence of secure execution 
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Applications 

• Security Monitor 
– Application-level security monitors in same address space as app. 

• Protect the protection mechanisms implemented in software 
– e.g., OS based rootkit detectors 

• Policy-protected Objects 
– Protected SW module can enforce arbitrary security  policies for 

access to a protected object in secure storage 

• application plug-ins 
• e-banking browser plug-in,  
• DRM media player plug-in  

• Security-critical device drivers 
• e.g., HDCP for secure display hardware 

• Dynamic binary translators 
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Hardware Security Research in  
Cloud Computing, Smartphones and Sensor-nets 
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Conclusions 

• New Secure Hardware design approaches 
– e.g., Secure Newcache uses Moving Target Defense to thwart 

cache side-channel attacks, without degrading performance 

• Design Hardware to enhance Software Security 
– e.g., Bastion: Hardware protects flexible software security 

monitors in same context as untrusted app being monitored 
– Can enhance Trustzone’s security in its Normal World 

• Many fertile security research areas in cloud computing, 
smartphones, sensors, IoT, multicore, SOCs, FPGAs, etc. 

• Hardware security architecture should project into the 
future, cover different threat models, and provide proactive 
security. 
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Sample References for further reading  
(all that can fit on 1 slide!) 

Secure Processors 
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• D. Lie, C. Thekkath, and M. Horowitz. Implementing an untrusted operating system on trusted hardware. ACM Symposium on Operating Systems Principles, Oct. 2003. 
• R. B. Lee, D. K. Karig, J. P. McGregor, and Z. Shi. Enlisting hardware architecture to thwart malicious code injection. International Conference on Security in Pervasive Computing, 2003. 
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• S. W. Smith and S. H. Weingart,. Building a High- Performance, Programmable Secure Coprocessor. Computer Networks, 31(8), pp. 831-860, April 1999.  
• D. Kirovski, M. Drinic, and M. Potkonjak, Enabling Trusted Software Integrity. ASPLOS, October 2002.  
• J. D. Tygar and B. Yee.  Dyad: A System for Using Physically Secure Coprocessors.  Carnegie Mellon University Technical Report CMU-CS-91-140R, May 1991.   
Secure Cache (Cache Side-Channel mitigation) 
• Z. Wang and R.B. Lee. A Novel Cache Architecture with Enhanced Performance and Security. MICRO, 2008. 
• Z. Wang and R.B. Lee. New Cache Designs for Thwarting Software Cache-based Side-Channel Attacks. ISCA, 2007. 
• Z. Wang and R.B. Lee. Covert and Side Channels due to Processor Architecture. Annual Computer Security  Applications Conference (ACSAC), 2006. 
• L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, D. Ponomarev. Non-monopolizable caches: Low-complexity mitigation of cache side channel attacks. ACM Transactions on Architecture and 

Code Optimization (TACO) Vol 8 Issue 4, Jan 2012. 
Memory Integrity Tree 
• Ralph C. Merkle. Protocols for public key cryptography. IEEE Symposium on Security and Privacy, 1980. 
• B. Rogers, S. Chhabra, Y. Solihin, M. Prvulovic. Using Address Independent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Performance-Friendly. MICRO 2007. 
• G. Suh, D. Clarke, M. van Dijk, S. Devadas,  Caches and Hash Trees for Efficient Memory Integrity. HPCA, 2003.  
• G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. Efficient Memory Integrity Verification and Encryption for Secure Processors.  MICRO, 2003. 
• Eric Hall and Charanjit S. Jutla. Parallelizable Authentication Trees . In Cryptology ePrint Archive. 
• B. Rogers, C. Yan, S. Chhabra, M. Prvulovic, Y. Solihin, Single-Level Integrity and Confidentiality Protection for Distributed Shared Memory Multiprocessors, HPCA  2008.  
• Elbaz, R., Champagne, D., Gebotys, C., Lee, R.B., Potlapally, N., Torres, L., Hardware Mechanisms for Memory Authentication: A Survey of Existing Techniques and Engines, Transactions on 

Computational Science IV, Lecture Notes in Computer Science (LNCS), issue 5340, pp. 1-22, March 2009. 
Crypto Acceleration in Processors 
• R.B. Lee, R.B., Y. Chen.  Processor Accelerator for AES.  IEEE Symposium on Application Specific Processors, June 2010. 
• W. Shi, H.H.S. Lee,  M. Ghosh, C. Lu, A. Boldyreva. High Efficiency Counter Mode Security Architecture via Prediction and Precomputation. ISCA 2005.  
Dynamic Information Flow Tracking 
• M. Dalton, H. Kannan, C. Kozyrakis, Raksha: A Flexible Information Flow Architecture for Software Security. ISCA 2007. 
• N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hardware enforcement of application security policies using tagged memory. OSDI, 2008. 
• M. Tiwari, H. Wassel, B. Mazloom, S. Mysore, F. Chong, and T. Sherwood, “Complete Information Flow Tracking from the Gates Up,” ASPLOS 2009. 
• N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani, , and D. I. August. RIFLE: An architectural framework for user-centric information-flow 

security. MICRO, 2004. 
• F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou,and Y. Wu. LIFT: A low-overhead practical information flow tracking system for detecting security attacks. MICRO, 2006. 
• G. E. Suh, J. Lee, and S. Devadas. Secure Program Execution via Dynamic Information Flow Tracking. ASPLOS, 2004. 
• Y. Chen, P. Jamkhedkar and R. B. Lee. A Software-Hardware Architecture for Self-Protecting Data, ACM Conference on Computer and Communications Security (CCS), October 2012.  
Hardware Trojans 
• A. Waksman, S. Sethumadhavan: Silencing Hardware Backdoors. IEEE Symposium on Security and Privacy 2011. 
• A. Waksman, S. Sethumadhavan: Tamper Evident Microprocessors. IEEE Symposium on Security and Privacy, 2010 
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