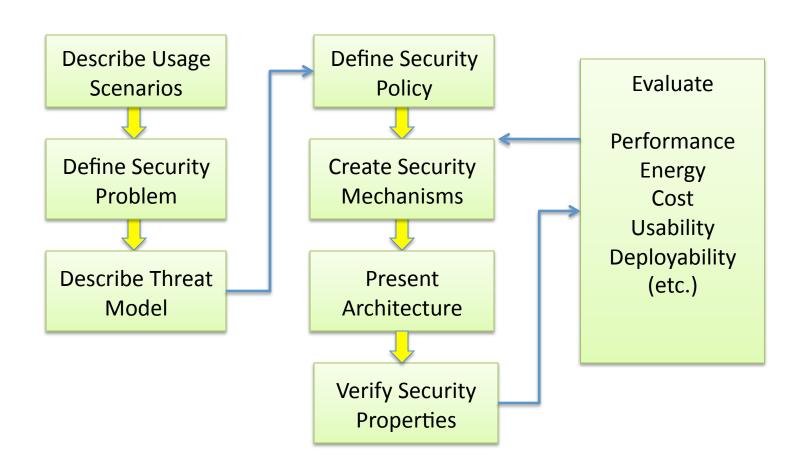
Security Basics

Ruby B. Lee
Princeton University
HotChips Security Tutorial
August 10 2014

Outline

- What is Security
- Threat Model
- Security Design Methodology
- Security Policies
- Access Control
 - Authentication and Authorization
- Cryptography
- Security Protocols

What is Security?


Cornerstone security properties (CIA):

- Confidentiality
 - Prevent disclosure of information to an unauthorized entity
 - Example Attack: Eavesdropping
- Integrity
 - Prevent unauthorized modification without detection
 - Example Attack: Corruption attacks (code injection)
- Availability
 - System and services are available when requested by legitimate users
 - Example Attack: Denial of Service

More Security Aspects

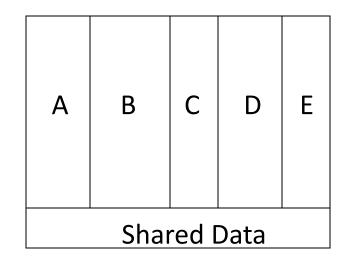
- Access control policy
 - Specifies which principals can access which objects/resources
 - Authentication and Authorization are essential aspects
- Accountability and Attribution
 - Specifies if/how actions can be tied to attacks
- Non-repudiation
 - Ability to hold one responsible to messages/events
- Anonymity
 - Ability to carry out actions without identification
- Privacy
 - Right to determine how one's personal information is distributed
- Distinction between Security (confidentiality) & Privacy
 - Confidentiality is the obligation to protect secret information
 - Privacy is the right to protect distribution of personal information

Lee's Security Architecture Design Methodology

Threat Model

- A threat model defines
 - the threats that are being considered
 - the threats that are not being considered
 - e.g., Consider threats/attacks on the confidentiality and integrity of sensitive data, but not Denial of Service threats/attacks.
 - the basic assumptions of the computing model
- An attack is an instantiation of a threat
- Attacks violate security properties of a system

Threat-based design


- Threat-based design is key difference for hardware designers
- Each speaker will talk about different threats & attacks
- System vulnerabilities exploited in attacks
 - Several vulnerabilities databases exist, e.g., http://cwe.mitre.org
- Arm's race: no such thing as absolute security
- Difference between Security and Reliability
 - Smart malicious attackers versus failures with characteristic/statistical behavior

Security Policies vs. Security Mechanisms

- Security Policy
 - specifies what and who is allowed access to what resources or information, when.
- Security mechanisms
 - implements the security policy
- Trusted vs. Trustworthy
 - Trusted depended on to maintain the security policy
 - Trustworthy designed to be secure, dependable
 - a trusted component may not be trustworthy, and vice versa
- Trusted Computing Base (TCB)
 - the hardware, software or networking components that must be correct and un-corruptible, otherwise the security policy may not hold

Multilevel vs. Multilateral Security Policies

Top Secret		
Secret		
Confidential		
Unclassified		

Multi Level Security (MLS)

Multi-lateral Security, or Compartmented Security

MLS: Hierarchical Security Levels

Military (DoD)

Commercial

- Subjects have clearances
- Objects have classifications
- TS > S > C > U partial ordering

Top Secret,	TS	
Secret,	S	
Confidential, C		
Unclassified, U		

CEO and VPs

Managers

Employees

Non-employees

- MLS is a form of Mandatory Access Control (MAC)
 - Needed when subjects/objects at different security levels use same system

Bell-LaPadula (BLP)

- BLP protects confidentiality
 - To prevent unauthorized reading
- BLP rules:
 - No subject may read data classified at a higher security level
 - Simple Security property:
 - A subject can read an object only if his clearance level is equal to or greater than the object's classification level.
 - No subject may write data to a lower security level
 - *-Property:
 - A subject can write an object only if his clearance level is less than or equal to the object's classification level.
- No read up, no write down

Why *-Property?

- Consider the "corrupted general"
- Prevents information leakage by a higher security subject, S1, to a lower security subject, S2.
 - Let clearance of General Smith = TS and clearance of Vladimir = U
- If no *-property, General Smith can read a TS file X and copy it to another file Y at U level that Vladimir can read.

Other Security Policy Models

Multi-Level Security Policy	Multi-Lateral Security Policy
BLP (Confidentiality)	Chinese Wall (Confidentiality)
Biba (Integrity)	Clark Wilson (Integrity)
MLS with Codewords	British Medical Assoc (BMA)
•••	•••

- Security policy models help us understand basic requirements for confidentiality and integrity, etc.
- Real-world security policies can be very complicated, e.g., HIPAA, etc.
 - translated into specific policy languages or XML, if policy is evaluated by computer for Authorization or Compliance purposes.

Access Control (AAA)

- Authentication: Who are you?
 - Authenticate human/machine to machine
 - What you know, What you have, What you are.
- Authorization: What are you allowed to do?
 - Restrict actions of authenticated users
 - Who can do what to which object?

(Subject, object, rights)

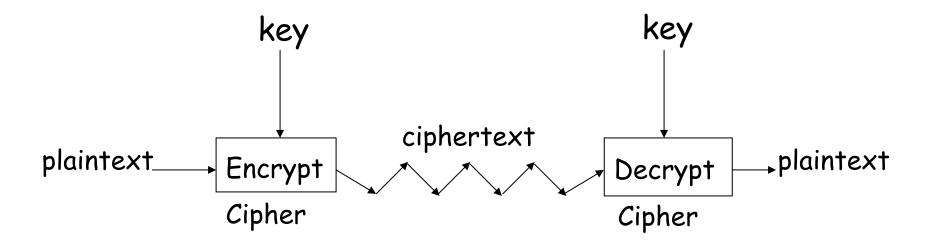
	Final Grades	Homework Grades	Exam Prep	Lecture Slides
Professor	R, W	R	R, W	R,W
TA	R	R, W	R, W	R
Student	-	-	-	R

Access Control Matrix

Types of Access Control

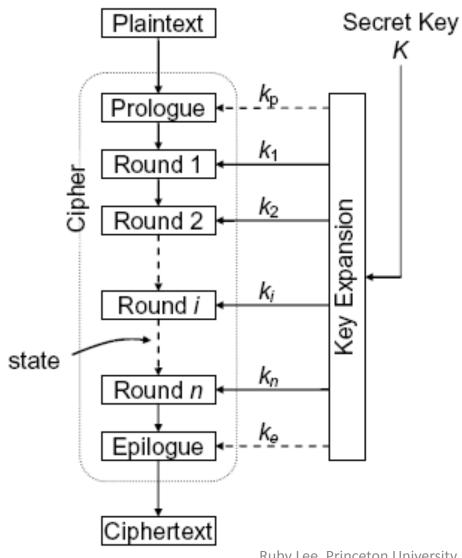
Type of Access Control	Access determined by:	Requires:
Mandatory Access Control (MAC)	System	Trusted system; with Rule-based access control
Discretionary Access Control (DAC)	User	Authentication of user; with <i>Identity-based</i> access control
Role-based access control (RBAC)	Current role of user	Authenticating user and verifying his current role
Originator-based access control (ORCON)	Originator (or creator)	"Policy specified by originator must be enforced on associated item forever."

Outline


- What is Security
- Threat Model
- Security Design Methodology
- Security Policies
- Access Control
 - Authentication and Authorization
- Cryptography
 - Symmetric-key Crypto, Cryptographic Hash, Public-Key Crypto and PKI
- Security Protocols

Classes of Cryptography

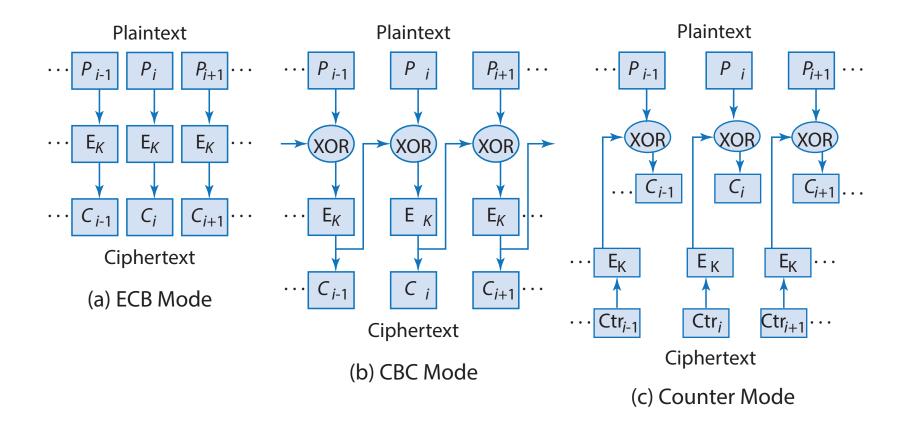
- Symmetric Key Ciphers
 - Useful for protecting Confidentiality
- Cryptographic Hash functions
 - Useful for protecting Integrity
- Public Key Ciphers
 - Useful for longer-term identity: authentication, digital signatures and non-repudiation


Cryptographic access control: put encrypted data in public, but control access to keys

Cryptography

- Symmetric-key crypto
 - Shared secret key used for encryption and decryption

Block Ciphers

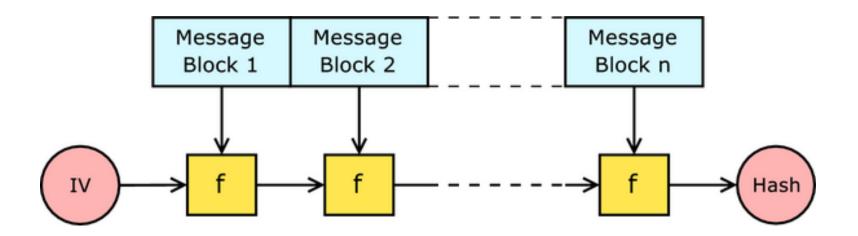

Examples:

AES = Advanced Encryption Std.

DES = Data Encryption Std. 3DES = Triple DES

Many others

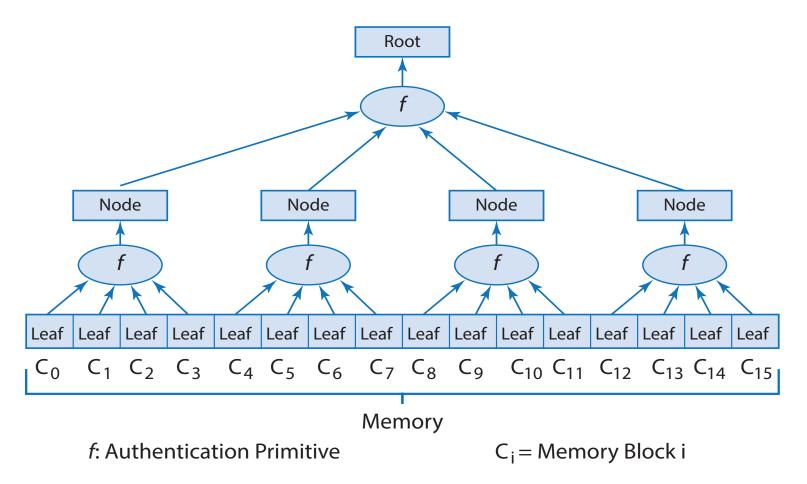
Modes of Operation


Electronic Code Book Mode Cipher Block Chaining

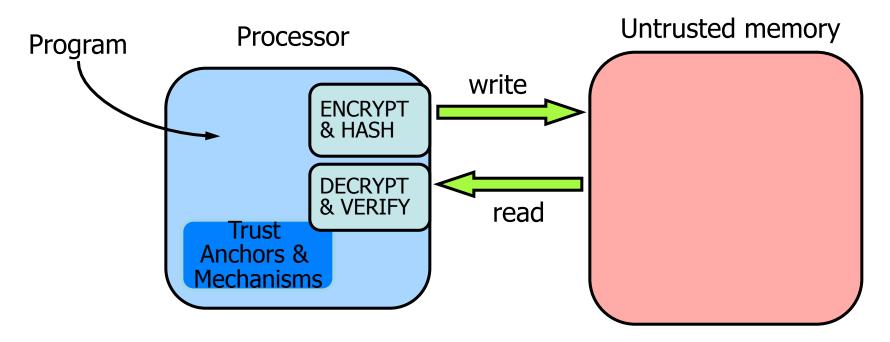
Mode
Ruby Lee, Princeton University

Counter Mode

Cryptographic Hash


- Acts like a fingerprint of a message
- h = hash(M)
 - "Bob Smith got an A+ in ELE386 in Spring 2005" →
 01eace851b72386c462de6ba6ec76f68
 - "Bob Smith got an B+ in ELE386 in Spring 2005" \rightarrow 936f8991c111f2cef61e90db0650ef4d

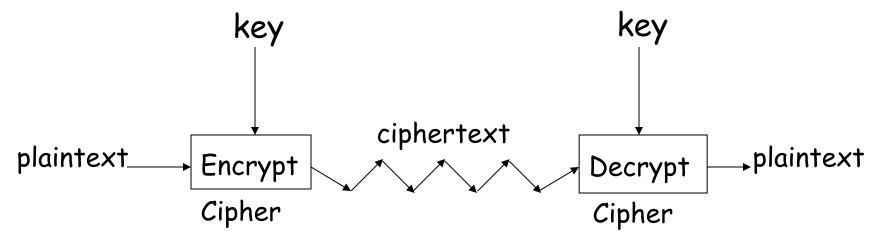
Cryptographic Hash Uses


- Useful for Integrity
- Data/Code corruption detection
- Message fingerprint
- Identity of a software module
- Keyed hash (with secret key)
 - Message Authentication Code (MAC, e.g., HMAC)
- Digital signature efficiency

Memory Integrity Tree

Merkle hash tree for Integrity Verification of large amounts of data

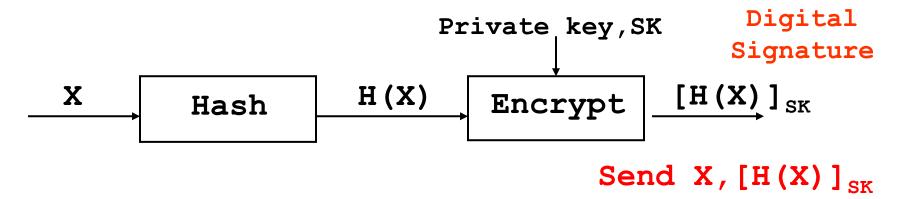
Protecting Memory Confidentiality & Integrity – Processor chip is security perimeter

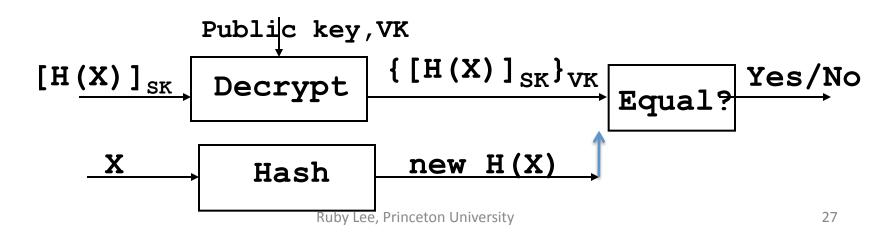


- Confidentiality: encrypt when evict cache-line from Last Level Cache (LLC), decrypt when fetch on-chip into LLC
- Integrity verification:
 - Check if a value from external memory is the most recent value stored at that address by the processor
 - Use cryptographic hash, MAC or Merkle hash tree

Importance of Key Management

- Kerckhoff's rule: crypto algorithm should be public, only the key must be secret
 - No "security by obscurity"
- Once key is known, any security provided by applying cryptography is lost
 - Secret key (symmetric key ciphers, and keyed-hashes)
 - Private key (public key ciphers)
 - Distinguish between Secret Key and Private Key
- Many keys needed
 - Keys can be generated when needed, or hierarchically encrypted (by SW or HW)
 - "master keys" should be protected by HW, since HW much less vulnerable to attacks

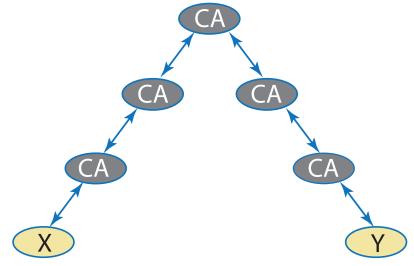

Public-Key Cryptography


- Symmetric-key crypto
 - Shared secret key used for encryption and decryption
- Public-key (asymmetric-key) crypto:
 - Encryption with Public key of recipient, decryption with Private key of recipient
 - Signing with Private key of sender, Verification with Public key of sender

Digital Signature

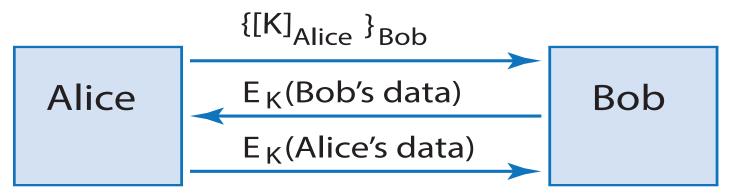
Signature generation

Signature verification


Public Key Infrastructure (PKI)

- How do you know a public key really belongs to Alice?
- Public keys have to be verified by a trusted authority, called a CA
- Certificate authority (CA) provides a way to obtain verified public-key certificates
 - CA verifies the credentials of a party before issuing a public-key certificate to it
- Public-key certificate has the following:
 - Name of certificate owner
 - Public-keys of the certificate owner
 - Period of validity for certificate
 - Certificate has CA's digital signature

Chain of trust

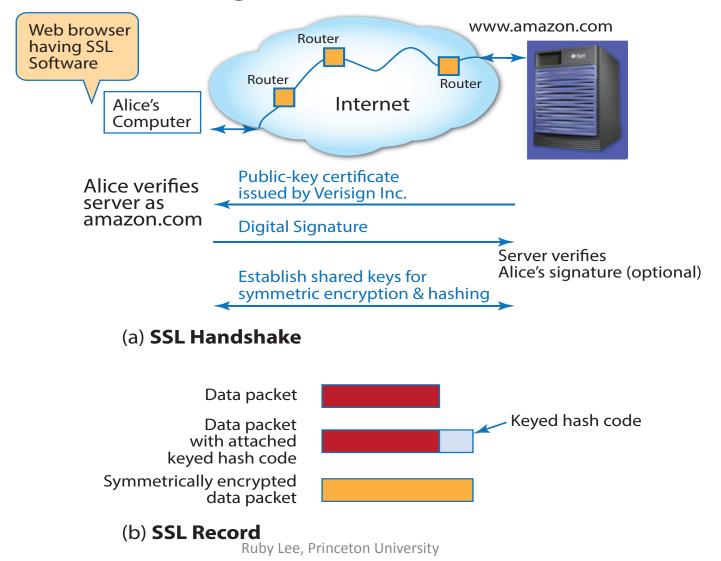

(wrt to Public-Key Certificates)

- Chain of trust: a series of certificates, each signed by a CA at next higher level of trust hierarchy
 - e.g., Alice's certificate is signed by Princeton CA, whose certificate is signed by NJ CA, whose certificate is signed by Verisign USA CA.

Confidentiality using public and symmetric key crypto

 Use public-key crypto to establish symmetric key K, which is then used for bulk encryption (much faster)

Protocol Notation:


Alice -> Bob: $\{[K]_{Alice}\}_{Bob}$; Alice sends Bob a secret key, signed & encrypted

Bob -> Alice: $E_K(Bob's data)$; Bob uses this for confidential communications

with Alice

Alice -> Bob: E_{κ} (Alice's data); likewise for Alice with Bob.

SSL (Secure Sockets Layer) protocol for securing web transactions

More Details and many References can be found in:

