
Hardware-level thread migration
in a 110-core shared-memory

multiprocessor

Mieszko Lis Keun Sup Shim

Brandon Cho Ilia Lebedev

Srinivas Devadas 1

Execution Migration Machine: Highlights

• 110-core chip multiprocessor

– unified shared memory, general-purpose

• Fast, autonomous thread migration

– fast: migration entirely in hardware

– fine-grained: instruction granularity

– autonomous: hardware decides when to migrate

• Reduces on-chip traffic up to 14-fold

– less interconnect traffic lower dynamic power

2

Outline

• Problem statement

• The Execution Migration Machine

• Costs and performance

3

Problem? On-chip traffic

• On-chip interconnect power already significant

– MIT RAW (16 RISCy cores): 39% of tile [ISPLED 2003]

– Intel TeraFLOPS (80 double-MAC cores): 28% of tile power [JSSC 2008]

• This is getting worse...

– transistor dimensions continue to scale

– but shrinking wires makes them slow and hot:
higher RC-delay, power, crosstalk

– relatively shorter and shorter wires feasible

• ...and worse

– scaling technology nodes + short wires lots (100s–1000s) of cores

– more cores need more data to process

– so interconnects have to carry more and more data

4

What causes this traffic?

Chunk 1

L2

L1

Chunk 2

L2

L1

Chunk 4

L2

L1

Chunk 3

L2

• In a typical multicore CPU...

– fast private caches (say L1)

– slower shared caches (say L2)

– shared caches in per-tile shards

L1

5

What causes this traffic?

L1

Chunk 1

L2

L1

Chunk 2

L2

L1

Chunk 4

L2

L1

Chunk 3

L2

• In a typical multicore CPU...

– fast private caches (say L1)

– slower shared caches (say L2)

– shared caches in per-tile shards

• Data fetched to threads

– threads generally pinned to cores

– interconnect brings data to
the locus of computation

6

• In a typical multicore CPU...

– fast private caches (say L1)

– slower shared caches (say L2)

– shared caches in per-tile shards

• Data fetched to threads

– threads generally pinned to cores

– interconnect brings data to
the locus of computation

• If workloads exceed L1 capacity...

– repeated L1 fetches from remote L2 chunks lots of traffic

– common with big datasets: db apps, machine learning, etc.

What causes this traffic?

L1

Chunk 1

L2

L1

Chunk 2

L2

L1

Chunk 4

L2

L1

Chunk 3

L2

7

How can we reduce this traffic?

• Locality is everything

– many remote L2 requests = bad

– would prefer to access local L2

L1

Chunk 1

L2

L1

Chunk 2

L2

L1

Chunk 4

L2

L1

Chunk 3

L2

8

L1

Chunk 1

L2

L1

Chunk 2

L2

L1

Chunk 4

L2

L1

Chunk 3

How can we reduce this traffic?

• Locality is everything

– many remote L2 requests = bad

– would prefer to access local L2

• Move the threads around!

– threads follow data

– makes remote accesses local

– one-off accesses can be remote

• ...but this requires an efficient hardware solution

– even high-locality apps can’t amortize slow migrations

9

Thread migration desiderata

• Frequent use requires fast migration

– should not involve software (e.g., OS)

– should not involve round-trips (e.g., via cache coherence)

• Frequent use requires fine-grained migration

– data accesses are dynamic, need to respond quickly

– should not involve centralized scheduling

• Reducing on-chip traffic requires small migrations

– either keep thread context small

– or migrate only a useful subset

• Realistic evaluation requires a large core count

– simple core and scalable memory model

10

The Execution Migration Machine

• Goals:

– most efficient thread migration

– simple & scalable design

– explore what is possible

– focus on on-chip data movement

• ASIC:

– 10mm x 10mm in 45nm

– 110 homogeneous cores

– single level of cache

– 2D mesh interconnect

– 2 off-chip memory interfaces

– optimized for efficient migration

10mm

10mm

11

Tile architecture

• Caches: over half of each tile

– 32KB data cache

– 8KB instruction cache

• Six on-chip network routers

– 64-bit flits, wormhole DoR

– single-cycle if no congestion

– six ensure deadlock freedom

• Custom stack-based core

– instruction-granularity migrations

– allows partial-context xfers
(min. 128 bits)

– two stacks, automatically
spilled/refilled via the data cache

– two SMT contexts ensure
deadlock-free migrations

10mm

10mm

917 µm

855 µm

cache SRAMs

12

Superfast migration: min 4 cycles

 PC stack

Source core Destination core

Body #2

Body #1

Head

PC stack

I. Context unload

(1 cycle)

Head flit:

Body flit #1:

Body flit #2:

II III I

II. Travel H hops

(H cycles)
III. Context load

(1 cycle)

IV. B body flits

(B cycles)

IV

Migration

start
Migration

done

13

Superfast migration: min 4 cycles

 PC stack

Source core Destination core

Body #2

Body #1

Head

PC stack

I. Context unload

(1 cycle)

Head flit:

Body flit #1:

Body flit #2:

II III I

II. Travel H hops

(H cycles)
III. Context load

(1 cycle)

IV. B body flits

(B cycles)

IV

Migration

start
Migration

done

14

Superfast migration: min 4 cycles

 PC stack

Source core Destination core

Body #2

Body #1

Head

PC stack

I. Context unload

(1 cycle)

Head flit:

Body flit #1:

Body flit #2:

II III I

II. Travel H hops

(H cycles)
III. Context load

(1 cycle)

IV. B body flits

(B cycles)

IV

Migration

start
Migration

done

15

Superfast migration: min 4 cycles

 PC stack

Source core Destination core

Body #2

Body #1

Head

PC stack

I. Context unload

(1 cycle)

Head flit:

Body flit #1:

Body flit #2:

II III I

II. Travel H hops

(H cycles)
III. Context load

(1 cycle)

IV. B body flits

(B cycles)

IV

Migration

start
Migration

done

16

Shared memory model

00000000–01ffffff

• Shared D$ architecture

– one D$ slice in each core

– top 7 bits of address core ID

– a specific address can only be
cached in a specific core

– memory consistency trivial

• LD/ST: via remote D$ access

– LD/ST/LD_RSV/ST_CND

– word request to remote D$

– result / ack from remote D$

– cannot cache data locally
 round-trip for every access

• Migration accelerates this

– turns multiple round-trips into
one trip + local accesses

02000000–03ffffff

04000000–05ffffff

06000000–07ffffff

da000000–dbffffff

d6000000–d7ffffff

d4000000–d5ffffff

d8000000–d9ffffff

+ d6000000–ffffffff cacheable in all cores

17

Memory

access

in core A

Address

cacheable

in core A?

Access memory &

continue execution

Migrate

thread to

home core

threads

exceeded?

Access memory &

continue execution

Core originating

memory access

Core where address

can be cached
Network

Send remote

request to

home core

Access memory

locally

Return data (read)

or ack (write) to

the requesting core A

yes

no

Remote op

Migrate

yes

no

Continue execution

Shared memory & migration

decision
Evict a thread

to its native core

18

Supported modes of migration

• Instruction-based

– e.g., migrate to core 10

• LD/ST-triggered, static

– determine if effective address cached in remote D$

– if remote, memory instruction specifies whether to migrate

– suitable for access patterns amenable to static/profiling analysis
(or for the particularly determined programmer)

• LD/ST-triggered, fully automatic

– determine if effective address cached in remote D$

– if remote, learning predictor decides whether to migrate

– suitable for dynamically changing access patterns
(or the not-so-determined programmer)

19

Learning migration predictors

• Per-tile predictors trigger migrations when advantageous

– detect long runs of accesses to the same core

A A B A C C C C A A A …

RA EM EM

20

Learning migration predictors

• Per-tile predictors trigger migrations when advantageous

– detect long runs of accesses to the same core

– enter sequence start PC into predictor table, migrate on this PC next time

A A B A C C C C A A A …

RA EM EM

table indexed by seq. start PC

Main

8

Tag Stack transfer size Valid

Hit = Migrate

Index

0

1

31

∙∙∙

PC

5 27

Aux

0

=

21

Learning migration predictors

• Per-tile predictors trigger migrations when advantageous

– detect long runs of accesses to the same core

– enter sequence start PC into predictor table, migrate on this PC next time

– adjust migrated stack size if migrated back on stack over/underflow

A A B A C C C C A A A …

RA EM EM

table indexed by seq. start PC

8 0

Main

Tag Stack transfer size Valid

Hit = Migrate

Index

0

1

31

∙∙∙

PC

5 27

Aux

=

22

Learning migration predictors

• Per-tile predictors trigger migrations when advantageous

– detect long runs of accesses to the same core

– enter sequence start PC into predictor table, migrate on this PC next time

– adjust migrated stack size if migrated back on stack over/underflow

– remove start PC from table if too few accesses after migration

A A B A C C C C A B D …

RA EM RA

table indexed by seq. start PC

8 0

Main

Tag Stack transfer size Valid

Hit = Migrate

Index

0

1

31

∙∙∙

PC

5 27

Aux

=

23

How much does this cost?

• Arch. overhead

– extra core context

– extra routers

– predictor (tiny)

• Area & leakage

– total +23% area

– leakage similar

• Dynamic power overhead

– dominates but highly benchmark-dependent

– cache accesses same for EM and RA, on-chip traffic different

0

100,000

200,000

300,000

400,000

500,000

RA EM² CC 100% CC 50%

routers D$ slice I$ dir. slice predictor core logic

(synthesized ASIC cell area, 800MHz; CC areas estimated)

Single tile area contributions, 45nm [µm²]

24

How well does it perform?

• Benchmarks optimized for migration-friendly access patterns

• Significant improvements in performance (up to 25%)

71%
75%

100%
96%

90%

0%

25%

50%

75%

100%

xval tbscan jacobi msort pfxsum

RA-only baseline EM²

Completion time vs baseline

(RTL simulation using 110-core chip) 25

How well does it perform?

• Benchmarks optimized for migration-friendly access patterns

• Significant improvements in performance (up to 25%)

• Huge improvements in on-chip traffic reduction (up to 14x!)
(significant reduction in dynamic power dissipation)

7%

32%

69%
65%

45%

0%

25%

50%

75%

100%

xval tbscan jacobi msort pfxsum

RA-only baseline EM²

71%
75%

100%
96%

90%

0%

25%

50%

75%

100%

xval tbscan jacobi msort pfxsum

RA-only baseline EM²

Completion time vs baseline On-chip traffic vs baseline

(RTL simulation using 110-core chip) 26

Summary

• Advantages

– significantly reduces traffic on high-locality workloads
up to 14x reduction in traffic in some benchmarks

– simple to implement and verify (indep. of core count, no transient states)

– decentralized & trivially scalable (only # core ID bits, addr⬌core mapping)

• Challenges

– workloads should be optimized with memory model in mind
(like allocating data on cache line boundaries but more coarse-grained)

– automatically mapping allocation over cores not a trivial problem

• Opportunities

– fine-grained migration is an enabling technology

– since it’s cheap and responsive, can be used for almost anything

– e.g., if only some cores have FPUs, migrate to access FPU

27

