Hardware-level thread migration
In a 110-core shared-memory
multiprocessor

N . Mieszko Lis Keun Sup Shim
I I I I I Brandon Cho llia Lebedev
Srinivas Devadas

CSAIL

Execution Migration Machine: Highlights

* 110-core chip multiprocessor
— unified shared memory, general-purpose

* Fast, autonomous thread migration
— fast: migration entirely in hardware
—fine-grained: instruction granularity
—autonomous: hardware decides when to migrate

* Reduces on-chip traffic up to 14-fold
— less interconnect traffic =» lower dynamic power

CCCCC

Outline

* Problem statement

* The Execution Migration Machine

» Costs and performance

Problem? On-chip traffic

* On-chip interconnect power already significant
— MIT RAW (16 RISCy cores): 39% of tile [ISPLED 2003]
— Intel TeraFLOPS (80 double-MAC cores). 28% of tile power [JSSC 2008]

* This is getting worse...
— transistor dimensions continue to scale

— but shrinking wires makes them slow and hot:
higher RC-delay, power, crosstalk

— relatively shorter and shorter wires feasible

e ...and worse
— scaling technology nodes + short wires = lots (100s—1000s) of cores
— more cores need more data to process
— SO Interconnects have to carry more and more data

i

CSAIL

What causes this traffic?

* |n a typical multicore CPU...

— fast private caches (say L1)

— slower shared caches (say L2) CTTTTTTTTTTT ~. T ~.

. . Chunk 1 . Chunk 2
— shared caches in per-tile shards | f " B s
L1 L1
_____ L2 L2
Chunk 3 . Chunk 4

i

CSAIL

What causes this traffic?

 |In a typical multicore CPU...

— fast private caches (say L1)
— slower shared caches (say L2)
— shared caches in per-tile shards

e Data fetched to threads

— threads generally pinned to cores
Chunk 3 Chunk 4

— Interconnect brings data to

the locus of computation

L g

CSAIL

What causes this traffic?

 |In a typical multicore CPU...

— fast private caches (say L1)
— slower shared caches (say L2)
— shared caches in per-tile shards

 Data fetched to threads

— threads generally pinned to cores |
— interconnect brings data to — 1| R 5

the locus of computation

* |If workloads exceed L1 capacity...
— repeated L1 fetches from remote L2 chunks = lots of traffic
— common with big datasets: db apps, machine learning, etc.
i

CSAIL

How can we reduce this traffic?

* Locality is everything

— many remote L2 requests = bad
— would prefer to access local L2

i

CSAIL

How can we reduce this traffic?

* Locality is everything

 Move the threads around!
— threads follow data
— makes remote accesses local
— one-off accesses can be remote

* ...but this requires an efficient hardware solution
— even high-locality apps can’t amortize slow migrations

i

CSAIL

Thread migration desiderata

Frequent use requires fast migration
— should not involve software (e.g., OS)
— should not involve round-trips (e.g., via cache coherence)

Frequent use requires fine-grained migration
— data accesses are dynamic, need to respond quickly
— should not involve centralized scheduling

Reducing on-chip traffic requires small migrations
— either keep thread context small
— or migrate only a useful subset

Realistic evaluation requires a large core count
— simple core and scalable memory model

i

CSAIL

10

The Execution Migration Machine

G O al S :

— most efficient thread migration |—||—||—||—||_||_||—||—||_||_|

- oimple & seelane deeion 4 0 T T |
— focus on on-chip data movement ||: H H H H H H H H H H_ {

ASIC: ORI e e O T T A T W T

ﬂwﬂlﬂﬂﬂﬂwﬂlﬂﬁﬂrﬂwwﬁﬁrﬂ ﬂEhﬂrﬂﬂwﬂlﬂHﬂwﬂlﬂfhﬂrﬂ{tﬂfhﬁrﬂ{%ﬂfhﬂrﬂﬂwﬁlﬂﬂﬂﬂwﬁ Ehﬂrﬂﬂﬁfhﬁrﬂﬂwﬁfhﬂrﬂfﬂﬁrﬂﬂﬂwﬂrﬂfﬂﬂrﬂ

— 10mm x 10mm in 45nm

— 110 homogeneous cores " || " " “ " ” || “ ” I
_ single level of cache ‘o e e e e et
- 2D mesh interconnect 00 T O 0
— 2 off-chip memory interfaces

— 0 ptl mized for efficient mi gr ation O O 10mm ! 000 O A)

i 1

CSAIL

Tile architecture

Caches: over half of each tile
A IIE‘BIMH' R B B AR e R e e R AR R A AR AR AG A AR ARG B A B PRE MR PR R B BER R HRE B
— 32KB data cache

datac I_II_II_I
— 8KB instruction cache

Six on-chip network routers

— 64-Dbit flits, wormhole DoR

— single-cycle if no congestion

— sSix ensure deadlock freedom 1omm
Custom stack-based core

— Instruction-granularity migrations

— allows partial-context xfers
(min. 128 bits)

— two stacks, automatically
spilled/refilled via the data cache

— two SMT contexts ensure
deadlock-free migrations

i p

CSAIL

=
==
=3
=
=
=
=t
=4
=
=
=
=
=3
=
==
=b
=
o=
=
=
=
=
=
=
==
==
ot
=
=0
=
=
==
=
o=t
e
==
==
=
o=
e
==
=
=
=
=
=
==
ps
=
=2
=
=
=
=
=
==
=0
=3
=
=4
=
=
=
=
=
==
=
=t
=
=
=
=)
=]
=
=
|
=
==
=
==
=
==
=
=
=
=
=
=t
=
=
=3
=
=0
=
=
=5
=
=
=
=
==
=
o
=
£
=
=
=4
=
==
=
=
=
oo
=
==
b
=
=5
==
==
=5
=

Superfast migration: min 4 cycles

Source core

stack

PC

Destination core

stack

V. B body flits
(B cycles)

Il. Travel H hops

PC

lll. Context load

........................ > Body #1 [.. (H cycles) (1 cycle) .
Head B | 1
start

| | 1 \V, done

Head flit: < L >Gommmmmmenee S SN

Body flit #1: D —— S>>
H 2 e e e

Ilrﬂds/" \ﬁ/gﬁb < >< >< > .

CSAIL

Superfast migration: min 4 cycles

Source core

stack

PC

—

Destination core

stack

|. Context unload
(1 cycle)

V. B body flits

(B cycles)

Body #2

= Body #1
Head

PC

l1l. Context load
(1 cycle)

Migration
start

Head flit:
Body flit #1.

IIW@%Z

CSAIL

Migration
done
I [1] IV
SQEEEEREEEE, S e L PR e PR e >€mmmmmmmmes G
D e >€mmmmmmmma=D>
€ S S GEEEEEEEEE >
14

Superfast migration: min 4 cycles

Source core

stack

PC

—

Destination core

stack

|. Context unload

(1 cycle)

V. B body flits
(B cycles)

Body #2 Il. Travel H hops
........................ ~> Body #1 (H cycles)
Head E B
start

| | 1 1 \V, done
Head flit; <------- . ——— DI, OSSN S
Body flit #1: D DN

H 2 e e e

Iliiﬂds/" ﬁgﬁ < >< >< > .

CSAIL

Superfast migration: min 4 cycles

Source core Destination core

PC

stack PC stack

—

|. Context unload

(1 cycle)
Body #2 Il. Travel H hops 1Il. Context load
........................ % Body #1 (H cycles) (1 cycle) .
Head
Migration Migration
start
| | 1 I \Y; done
Head flit: < > >oenmennees ><rmmemmm e
Body flit #1: D —— Semmmmeennne>
H 2 e e e
Iliiﬂds/" Iﬁgﬁ < >< >< > y

CSAIL

Shared memory model

Shared D$ architecture
— one D$ slice in each core
— top 7 bits of address - core ID

— a specific address can only be
cached in a specific core

— memory consistency trivial

« LD/ST: via remote D$ access
— LD/ST/LD RSV/ST CND
— word request to remote D$
— result / ack from remote D$

— cannot cache data locally
=» round-trip for every access

« Migration accelerates this

— turns multiple round-trips into
one trip + local accesses

CSAIL

IIE‘EIMH‘ HEEREIBEEEaRRYY N‘ Wi BB1 EA Y EB EEABE ARYAGHARABBEARHEIWERREAREABAERIRYA KA ABRAVRRUAEN§ BERIBGEAHEE IS PHRESBEAAE0ED 468 I

0200000003 || “ ” I

o4oo6ooo-osfffff “ ” |

Ehﬁrﬂﬂwﬂlﬂﬂﬂfﬂﬂlﬂfhﬂrhwfhﬁrﬂ ﬂEhﬂrﬂﬂwﬂlﬂHﬂwﬂlﬂfhﬂrﬂ{tﬂfhﬁrﬂ{%ﬂfhﬂrﬂﬂwﬁlﬂﬂﬂﬂwﬁ bk H9AGREARER RAR R RRREEA P

d 4000000—d5f‘fffff

A T T T T 0 T IF

A
.IMMHIHMMHM Hﬁﬁfﬂﬂwﬂnﬂﬁﬂﬂwﬂnﬁﬁ&ﬁﬂﬁ@ﬂ E@HHMMHMMMM MEMM Mﬁrﬂ&ﬁ il MHMM il B ﬁ 1| Bl M il A8 Mﬁfﬂ

+ d6000000fffffff cacheable in all cores

17

Shared memory & migration

_ _ | Return data (read)
Continue execution €«—— or ack (write) to

the requesting core A

T

Access memory

Access memory &

continue execution
Send remote

|
|
|
|
|
yy’ request to ocally
Remote op home core |
Memory Address / :
access __5 cacheable |
in core A in core A? no I Evict a thread
| yes to its native core
Migrate | /
Migrate |
thread to 1 # threads
home core | exceeded?

|

| n& Access memory &

: continue execution
|

Core originating Network Core where address
memory access can be cached

N .
i 1

T CSAIL

Supported modes of migration

 Instruction-based
— e.g., migrate to core 10

« LD/ST-triggered, static
— determine if effective address cached in remote D$
— If remote, memory instruction specifies whether to migrate

— suitable for access patterns amenable to static/profiling analysis
(or for the particularly determined programmer)

« LD/ST-triggered, fully automatic
— determine if effective address cached in remote D$
— If remote, learning predictor decides whether to migrate

— suitable for dynamically changing access patterns
(or the not-so-determined programmer)

i

CSAIL

19

Learning migration predictors

» Per-tile predictors trigger migrations when advantageous
— detect long runs of accesses to the same core

i

CSAIL

20

Learning migration predictors

» Per-tile predictors trigger migrations when advantageous

— enter sequence start PC into predictor table, migrate on this PC next time

table indexed by seq. start PC

AABACCCCAAA...;

,/ PC
t t 27 5

RA EM EM ./

Index | Valid Tag Stack transfer size
0 Main Aux

> @ 8 0

31

4
4
4
4
7
4
4
4
4
4
4
4
4
/
S~~_ =/= i i
‘‘‘‘‘ Hit = Migrate
NNN‘ »

A

i

CSAIL

Learning migration predictors

» Per-tile predictors trigger migrations when advantageous

— adjust migrated stack size if migrated back on stack over/underflow

table indexed by seq. start PC

AABACCCCAAA...;

RA EM EM

PC
27 5t
Index | Valid Tag Stack transfer size
0 Main Aux
1
> @ 8 0
31 /
N~
v
o =

Y

— Hit = Migrate

i

CSAIL

22

Learning migration predictors

» Per-tile predictors trigger migrations when advantageous

— remove start PC from table if too few accesses after migration

table indexed by seq. start PC

L Y Y G 2 PC
' ' ' 27 5

Index | Valid Tag Stack transfer size
0 Main Aux
1

31

4
4
4
4
7
4
4
4
4
4
4
4
4
/
S~~_ =/= i .
‘‘‘‘‘ Hit = Migrate
NNN‘ »

A

i

CSAIL

23

How much does this cost?

 Arch. overhead Single tile area contributions, 45nm [umZ]
— extra core context Erouters ED$slice mI$ mdir. slice mpredictor Mcore logic
— extra routers 200,000

— predictor (tiny) 400,000
300,000 -

* Area & leakage 20000
— total +23% area 100,000 -
— leakage similar 0 -

EM?2 CC 100% CC 50%

 Dynamic power overhead
— dominates but highly benchmark-dependent
— cache accesses same for EM and RA, on-chip traffic different

|||i|- ﬁéﬂﬁ (synthesized ASIC cell area, 800MHz; CC areas estimated) 2«

CSAIL

How well does it perform?

Completion time vs baseline
®m RA-only baseline BEM?

100% -

75% -

50% -

25% -

0% -

xval tbscan jacobi msort pfxsum

 Benchmarks optimized for migration-friendly access patterns
 Significant improvements in performance (up to 25%)

Illil- @E& (RTL simulation using 110-core chip) 25

CSAIL

How well does it perform?

Completion time vs baseline On-chip traffic vs baseline
RA-only baseline BEM? ®m RA-only baseline BEM?
100% 100%
o0y 969 90%
75% T o0 75%
50% 50%
25% 25%
0% 0% -
xval tbscan jacobi msort pfxsum xval tbscan jacobi msort pfxsum

 Benchmarks optimized for migration-friendly access patterns
« Significant improvements in performance (up to 25%)

« Huge improvements in on-chip traffic reduction (up to 14x!)
(=» significant reduction in dynamic power dissipation)

Illil- @E& (RTL simulation using 110-core chip) 25

CSAIL

Summary

« Advantages

— significantly reduces traffic on high-locality workloads
up to 14x reduction in traffic in some benchmarks

— simple to implement and verify (indep. of core count, no transient states)
— decentralized & trivially scalable (only # core ID bits, addr e core mapping)

* Challenges

— workloads should be optimized with memory model in mind
(like allocating data on cache line boundaries but more coarse-grained)

— automatically mapping allocation over cores not a trivial problem

« Opportunities
— fine-grained migration is an enabling technology
— since it's cheap and responsive, can be used for almost anything
— e.g., if only some cores have FPUs, migrate to access FPU

i .

CSAIL

