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Execution Migration Machine: Highlights 

• 110-core chip multiprocessor 

– unified shared memory, general-purpose 

 

• Fast, autonomous thread migration 

– fast: migration entirely in hardware 

– fine-grained: instruction granularity 

– autonomous: hardware decides when to migrate 

 

• Reduces on-chip traffic up to 14-fold 

– less interconnect traffic  lower dynamic power 

2 
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Problem? On-chip traffic 

• On-chip interconnect power already significant 

– MIT RAW (16 RISCy cores): 39% of tile [ISPLED 2003] 

– Intel TeraFLOPS (80 double-MAC cores): 28% of tile power [JSSC 2008] 

 

• This is getting worse... 

– transistor dimensions continue to scale 

– but shrinking wires makes them slow and hot: 
higher RC-delay, power, crosstalk 

– relatively shorter and shorter wires feasible 

 

• ...and worse 

– scaling technology nodes + short wires  lots (100s–1000s) of cores 

– more cores need more data to process 

– so interconnects have to carry more and more data 
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What causes this traffic? 
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• In a typical multicore CPU... 

– fast private caches (say L1) 

– slower shared caches (say L2) 

– shared caches in per-tile shards 

 

• Data fetched to threads 

– threads generally pinned to cores 

– interconnect brings data to 
the locus of computation 

 

• If workloads exceed L1 capacity... 

– repeated L1 fetches from remote L2 chunks  lots of traffic 

– common with big datasets: db apps, machine learning, etc. 
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How can we reduce this traffic? 

• Locality is everything 

– many remote L2 requests = bad 

– would prefer to access local L2 
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How can we reduce this traffic? 

• Locality is everything 

– many remote L2 requests = bad 

– would prefer to access local L2 

 

• Move the threads around! 

– threads follow data 

– makes remote accesses local 

– one-off accesses can be remote 

 

• ...but this requires an efficient hardware solution 

– even high-locality apps can’t amortize slow migrations 
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Thread migration desiderata 

• Frequent use requires fast migration 

– should not involve software (e.g., OS) 

– should not involve round-trips (e.g., via cache coherence) 

 

• Frequent use requires fine-grained migration 

– data accesses are dynamic, need to respond quickly 

– should not involve centralized scheduling 

 

• Reducing on-chip traffic requires small migrations 

– either keep thread context small 

– or migrate only a useful subset 

 

• Realistic evaluation requires a large core count 

– simple core and scalable memory model 
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The Execution Migration Machine 

• Goals: 

– most efficient thread migration 

– simple & scalable design 

– explore what is possible 

– focus on on-chip data movement 

 

• ASIC: 

– 10mm x 10mm in 45nm 

– 110 homogeneous cores 

– single level of cache 

– 2D mesh interconnect 

– 2 off-chip memory interfaces 

– optimized for efficient migration 

10mm 

10mm 
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Tile architecture 

• Caches: over half of each tile 

– 32KB data cache 

– 8KB instruction cache 

• Six on-chip network routers 

– 64-bit flits, wormhole DoR 

– single-cycle if no congestion 

– six ensure deadlock freedom 

• Custom stack-based core 

– instruction-granularity migrations 

– allows partial-context xfers 
(min. 128 bits) 

– two stacks, automatically 
spilled/refilled via the data cache 

– two SMT contexts ensure 
deadlock-free migrations 

 

10mm 

10mm 

917 µm 

855 µm 

cache SRAMs 
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Superfast migration: min 4 cycles 
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Shared memory model 

00000000–01ffffff 

• Shared D$ architecture 

– one D$ slice in each core 

– top 7 bits of address  core ID 

– a specific address can only be 
cached in a specific core 

– memory consistency trivial 

• LD/ST: via remote D$ access 

– LD/ST/LD_RSV/ST_CND 

– word request to remote D$ 

– result / ack from remote D$ 

– cannot cache data locally  
 round-trip for every access 

• Migration accelerates this 

– turns multiple round-trips into 
one trip + local accesses 

 

02000000–03ffffff 

04000000–05ffffff 

06000000–07ffffff 

da000000–dbffffff 

d6000000–d7ffffff 

d4000000–d5ffffff 

d8000000–d9ffffff 

+ d6000000–ffffffff cacheable in all cores 
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Supported modes of migration 

• Instruction-based 

– e.g., migrate to core 10 

 

• LD/ST-triggered, static 

– determine if effective address cached in remote D$ 

– if remote, memory instruction specifies whether to migrate 

– suitable for access patterns amenable to static/profiling analysis 
(or for the particularly determined programmer) 

 

• LD/ST-triggered, fully automatic 

– determine if effective address cached in remote D$ 

– if remote, learning predictor decides whether to migrate 

– suitable for dynamically changing access patterns 
(or the not-so-determined programmer) 
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Learning migration predictors 

• Per-tile predictors trigger migrations when advantageous 

– detect long runs of accesses to the same core 

A A B A C C C C A A A … 

RA EM EM 
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Learning migration predictors 

• Per-tile predictors trigger migrations when advantageous 

– detect long runs of accesses to the same core 

– enter sequence start PC into predictor table, migrate on this PC next time 
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Learning migration predictors 

• Per-tile predictors trigger migrations when advantageous 

– detect long runs of accesses to the same core 

– enter sequence start PC into predictor table, migrate on this PC next time 

– adjust migrated stack size if migrated back on stack over/underflow 

– remove start PC from table if too few accesses after migration 

A A B A C C C C A B D … 

RA EM RA 

table indexed by seq. start PC 
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How much does this cost? 

• Arch. overhead 

– extra core context 

– extra routers 

– predictor (tiny) 

 

• Area & leakage 

– total +23% area 

– leakage similar 

 

• Dynamic power overhead 

– dominates but highly benchmark-dependent 

– cache accesses same for EM and RA, on-chip traffic different 

0

100,000

200,000

300,000

400,000

500,000

RA EM² CC 100% CC 50%

routers D$ slice I$ dir. slice predictor core logic

(synthesized ASIC cell area, 800MHz; CC areas estimated) 

Single tile area contributions, 45nm [µm²] 
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How well does it perform? 

• Benchmarks optimized for migration-friendly access patterns 

• Significant improvements in performance (up to 25%) 
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How well does it perform? 

• Benchmarks optimized for migration-friendly access patterns 

• Significant improvements in performance (up to 25%) 

• Huge improvements in on-chip traffic reduction (up to 14x!) 
( significant reduction in dynamic power dissipation) 
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Summary 

• Advantages 

– significantly reduces traffic on high-locality workloads 
up to 14x reduction in traffic in some benchmarks 

– simple to implement and verify (indep. of core count, no transient states) 

– decentralized & trivially scalable (only # core ID bits, addr⬌core mapping) 

 

• Challenges 

– workloads should be optimized with memory model in mind 
(like allocating data on cache line boundaries but more coarse-grained) 

– automatically mapping allocation over cores not a trivial problem 

 

• Opportunities 

– fine-grained migration is an enabling technology 

– since it’s cheap and responsive, can be used for almost anything 

– e.g., if only some cores have FPUs, migrate to access FPU 
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