
© Copyright 2013 Xilinx
.

Dataflow Architectures for 10Gbps

Line-rate Key-value-Stores

Michaela Blott, Kees Vissers - Xilinx Research

© Copyright 2013 Xilinx
.

Current key-value stores (KVS)

– State-of-the-art

– Bottlenecks

Dataflow architectures for KVS

– Why dataflow architectures

– Prototype architecture

– Results

– Limitations

Page 2

Agenda

© Copyright 2013 Xilinx
.

Common middleware application to alleviate access bottlenecks on

databases

Most popular and most recent database contents are cached in main

memory of a tier of x86 servers

Provides the abstraction of an associative

 memory

– Values are stored or retrieved by sending the

 associated key

– GET(KEY) and SET(KET,VALUE)

Memcached is a commonly used open source package for KVS

Page 3

Key-Value Stores

Memcached Web server

Database Memcached Memcached

server

 GET(k):

 receive(p);

 k = parse(p);

 a = hashKey(k);

 v = readValue(a);

 new_p = format(v);

 send(new_p);

Web server
Web server

© Copyright 2013 Xilinx
.

Hardware:

Software

– Each connection is represented as a

struct (c)

– Any event on the connection state is

distributed to pthreads (via Libevent)

– All worker threads run the same

code (drive_machine())

• Loop over switch statement over the

connection state

• Locks on sockets, hash table, and

value store areas/items

Page 4

Typical Implementations

motherboard

DRAM x86

network

adapter

nc 10G if

drive_machine():

while (!stop) {

 switch(c->state) {

 case connection_waiting:

 case connection_closing:

 …

 case new_command:

 lock socket;

 read from socket;

 unlock socket;

 parse;

 case read_htable:

 hash key;

 lock hash table;

 hash table access;

 hash table LRU;

 unlock hash table;

 case write_output:

 …

drive_machine():

while (!stop) {

 switch(c->state) {

 case connection_waiting:

 case connection_closing:

 …

 case new_command:

 lock socket;

 read from socket;

 unlock socket;

 parse;

 case read_htable:

 hash key;

 lock hash table;

 hash table access;

 hash table LRU;

 unlock hash table;

 case write_output:

 …

drive_machine():

while (!stop) {

 switch(c->state) {

 case connection_waiting:

 case connection_closing:

 …

 case new_command:

 lock socket;

 read from socket;

 unlock socket;

 parse;

 case read_htable:

 hash key;

 lock hash table;

 hash table access;

 hash table LRU;

 unlock hash table;

 case write_output:

 …

drive_machine():

while (!stop) {

 switch(c->state) {

 case connection_waiting:

 case connection_closing:

 …

 case new_command:

 lock socket;

 read from socket;

 unlock socket;

 parse;

 case read_htable:

 hash key;

 lock hash table;

 hash table access;

 hash table LRU;

 unlock hash table;

 case write_output:

 …

Thread 0 … thread n-1

© Copyright 2013 Xilinx
.

Best Published Performance Numbers

Page 5

Platform RPS [M] Latency [us] RPS/W [K]

Intel® Xeon® (8 cores)* 1.34 200-300 7

Intel Xeon (2 sockets, 16cores)* 3.15 200-300 11.2

Memcached with Infiniband &

Intel Xeon (2 sockets, 16cores)**

1.8 12 Unknown

TilePRO (64 cores)*** 0.34 200-400 3.6

TilePRO (4x64 cores)*** 1.34 200-400 5.8

Chalamalasetti (FPGA)**** 0.27 2.4-12 30.04

200us latency

7K

1.4MRPS

* WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012).

**JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J., UR RAHMAN, M. W., ISLAM, N. S., OUYANG, X., WANG, H., SUR, S., AND PANDA, D. K. Memcached design on high

performance rdma capable interconnects. 2012 41st International Conference on Parallel Processing 0 (2011), 743–752.

*** BEREZECKI, M., FRACHTENBERG, E., PALECZNY, M., AND STEELE, K. Power and performance evaluation of memcached on the tilepro64 architecture. In Green Computing

Conference and Workshops (IGCC), 2011 International (July 2011), pp. 1 –8.

**** Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached.

InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.

© Copyright 2013 Xilinx
.

CPU intensive

Frequent interrupts*

– Leads to high rate of instruction cache misses (up to 160 MPKI)

• Requires much larger L1 instruction caches

– Causes poor branch predictability

• Stalls in the superscalar pipeline architecture of standard x86

High latency*

– Packets have to be DMA’ed from/to network adapter over the PCIe® bus which

introduces high latency

Page 6

Bottlenecks – TCP/IP Stack

CPI: 2.5

Total: 45%us, 113%sy, 0%ni, 534%id, 0%wa, 0%hi, 109%si, 0%st

* Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC

accelerators for memcached. InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-

47.

=> No resource sharing between memcached and TCP/IP stack

=> Close integration of network, compute and memory

*Top (while running 4 memcached instances

© Copyright 2013 Xilinx
.

Threads stall on memory locks

1. Large locks effectively serialize execution

2. Synchronization races cause poor branch predictability

– This leads to inefficient use of superscalar pipelines

– Intel has shown that by improving the granularity of the locks, we can scale to 1.4

MRPS (from 0.2MRPS)*

Last level cache ineffective due to random-access nature of key-value-

stores (miss rate 60% - 95%**)

– Multithreading can’t effectively hide memory access latencies

– Cause considerable power waste

Page 7

Bottlenecks –
Synchronization Overhead and L3 Cache

* WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012).

** Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached.

InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.

=> Exploitation of instruction-level parallelism through data-flow architectures

=> Static memory access schedule eliminates memory arbitration conflict

=> Data caching is ineffective

© Copyright 2013 Xilinx
.

Memcached is fundamentally a streaming problem

– Data is moved from network to memory and back with little compute

As such, dataflow architectures, frequently used for network processing, should

be well suited towards the application

– Higher performance

– Lower power consumption

Page 8

Why Dataflow Architectures?

 Program:

 receive(p);

 k = parse(p);

 a = hashKey(k);

 v = readValue(a);

 new_p = format(v);

 send(new_p);

DRAM

Network

Interface

(10Gbps Ethernet)

Processing

© Copyright 2013 Xilinx
.

Proposed System Architecture

Page 9

motherboard

DRAM x86

network

adapter

Memcached

10G if
FPGA

Network stack

DRAM

Memcached:

Memory allocation*

General:

Configuration

Control

*below 3% of 1 core for 10% SET operations

*limited memory access bandwidth on platform

Dataflow architecture

to increase throughput

Tight integration of

network, compute

and memory to lower

latency

Completely separate

TCP/IP stack to stop

interference with

application
Some functionality is

offloaded onto the

x86

© Copyright 2013 Xilinx
.

FPGA-based Dataflow Architecture

Page 10

Request

Parser

Response

Formatter

Hash

Table
Value Store

DRAM Controller

UDP/TCP

Offload Engines
PCI DMA

Network

Interface

(10Gbps Ethernet)

DRAM

Standardized interface:

Key, value, meta-data

FPGA

Hash

Table

Value

Store

© Copyright 2013 Xilinx
.

FPGA-based Dataflow Architecture

Page 11

Request

Parser

Response

Formatter

Hash

Table
Value Store

DRAM Controller

UDP/TCP

Offload Engines
PCI DMA

Network

Interface

(10Gbps Ethernet)

DRAM

FPGA

Hash

Table

Value

Store

Up to 23 packets

reside

concurrently in

the pipeline

=> Exploiting instruction-level parallelism increases throughput, lowers latency

 and is more power efficient

=> Inherently scalable

Memcached Processing Pipeline

(Latency: 481 cycles @ 156MHz vs 0.5-1Million cycles @ 2GHz

TCP/IP: 292, Memcached-TCP/IP: 189)

© Copyright 2013 Xilinx
.

Collision handling through parallel lookup (8-way)

– Suits the wide memory bus

Flexible key handling through striping

Page 12

Hash Table Architecture

© Copyright 2013 Xilinx
.

Design tradeoffs

Size for hash table <400MB

– Key limit is 168 byte (memcached max: 250B, most use-cases <50B)

On our platform this hash table manages 23.6GB of value storage

Hash Table Dimensions

+Bandwidth

-Collisions

+
F

le
x
ib

ili
ty

-S
to

ra
g
e
 e

ff
ic

ie
n
c
y

8 parallel items

168B keys

2 Million Entries

Page 13

© Copyright 2013 Xilinx
.

System Test Setup

Standard x86

Memcached client

Standard x86

Memcached

server

FPGA

Memcached

server
Spirent Network Tester/

NetFPGA-10G

Page 14

© Copyright 2013 Xilinx
.

System Test Setup

Reproducing

standard

performance

results

Spirent Network Tester/

NetFPGA-10G

Testing

functionality

Performance

Testing

Standard Intel I7

Memcached

server

Standard Intel I7

Memcached

client

(Memslap etc...)

FPGA-based

Memcached

server

10G Ethernet

links

NetFPGA-10G

Spirent

TestCenter

Page 15

© Copyright 2013 Xilinx
.

Power - Test Setup & Results

Test system 2: without FPGA board Test system 1: with FPGA board

*(Power sourced from: power plug meter, xpower, data sheets and power regulator readings)

**(UDP, binary protocol)

***(includes FPGA and host system)

© Copyright 2013 Xilinx
.

Results - Performance

* UDP, GET, BINARY

FPGA delivers

constant 10Gbps

performance –

network becomes the

bottleneck

X86 performance

limited by a per

packet overhead

Set performance

saturates network as

well

Page 17

Higher is better

© Copyright 2013 Xilinx
.

Sustained line rate processing for 10GE – 13MRPS possible, at smallest packet size

– Significant improvement over latest x86 numbers

Lower power

Combined: 36x in RPS/Watt with low variation

Cutting edge latency

– microseconds instead of 100s of microseconds

First Results of Memcached Evaluation

Page 18

Platform RPS [M] Latency [us] RPS/W [K]

Intel Xeon (8 cores) 1.34 200-300 7

TilePRO (64 cores) 0.34 200-400 3.6

FPGA (board only) 13.02 3.5-4.5 254.8

FPGA (with host) 13.02 3.5-4.5 106.7

© Copyright 2013 Xilinx
.

Code Complexity

Page 19

Request

Parser

Response

Formatter

Hash

Table
Value Store

DRAM Controller

UDP/TCP

Offload Engines
PCI DMA

Network

Interface

(10Gbps Ethernet)

DRAM

Standardized interface:

Key, value, meta-data

FPGA

Hash

Table

Value

Store

3,444 LOC 3,415 LOC 2,336 LOC 2,941 LOC

Total: 16k LOC

vs 10k LOC

LOC = Lines of Code

© Copyright 2013 Xilinx
.

Hardware design exposes a greater complexity to the user and requires therefore

more engineering effort

HLS reduces the complexity and shortens the development effort

Page 20

Limitations
Development Effort

Design spec

In HDL

C-based

design

Bitstream

High-Level

Synthesis

Synthesis

Place&Route

Meeting physical

constraints

Simulation

Qualitative graph only * UDP, GET, BINARY

=> Greater performance at expense of larger development effort

=> Exploration of how HLS can reduce the cost

© Copyright 2013 Xilinx
.

Hardware design exposes a greater complexity to the user and requires therefore

more engineering effort

HLS reduces the complexity and shortens the development effort

Page 21

Limitations
Development Effort

Qualitative graph only * UDP, GET, BINARY

=> Greater performance at expense of larger development effort

=> Exploration of how HLS can reduce the cost

© Copyright 2013 Xilinx
.

TCP offload restricted to #sessions

=> Future investigation into high session count TOE

Limited storage capacity

=> SSD

Memory allocation & cache management on host CPU

 Limited collision handling

 Limited protocol support

=> Exploration of SoC architecture

Other Limitations

Page 22

© Copyright 2013 Xilinx
.

Dataflow architecture delivers 10Gbps line-rate performance and

scalability to higher rates

Significantly higher RPS/Watt, with that lower TCO

Minimal latency

HLS reduces the complexity and shortens the development effort

Next Steps:

– Address limitations

– Trials with real use cases

Summary & Next Steps

Page 23

© Copyright 2013 Xilinx
.

Thank You.

mblott@xilinx.com

© Copyright 2013 Xilinx
.

[1] ARVIND, AND NIKHIL, R. Executing a program on the mittagged-token dataflow architecture. Computers, IEEE Transactions on 39, 3 (March

1990), 300–318.

[2] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND PALECZNY, M. Workload analysis of a large-scale key-value store.

SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–64.

[3] BANDO, M., ARTAN, N., AND CHAO, H. Flashlook: 100-gbps hash-tuned route lookup architecture. In High Performance Switching and

Routing, 2009. HPSR 2009. International Conference on (June 2009), pp. 1 –8.

[4] BEREZECKI, M., FRACHTENBERG, E., PALECZNY, M., AND STEELE, K. Power and performance evaluation of memcached

on the tilepro64 architecture. In Green Computing Conference and Workshops (IGCC), 2011 International (July 2011), pp. 1 –8.

[5] CONG, J., LIU, B., NEUENDORFFER, S., NOGUERA, J., VISSERS, K., AND ZHANG, Z. High-level synthesis for fpgas:

From prototyping to deployment. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 30, 4 (April 2011), 473 –491.

[6] FERDMAN, M., ADILEH, A., KOCBERBER, O., VOLOS, S., ALISAFAEE, M., JEVDJIC, D., KAYNAK, C., POPESCU, A. D., AILAMAKI, A.,

AND FALSAFI, B. Clearing the clouds: a study of emerging scale-out workloads on modern hardware. SIGARCH Comput. Archit. News 40, 1

(Mar. 2012), 37–48.

[7] HETHERINGTON, T. H., ROGERS, T. G., HSU, L., O’CONNOR, M., AND AAMODT, T. M. Characterizing and evaluating a key-value store

application on heterogeneous cpu-gpu systems. In Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems

& Software (Washington, DC,

USA, 2012), ISPASS ’12, IEEE Computer Society, pp. 88–98.

[8] ISTVAN, Z. Hash Table for Large Key-Value Stores on FPGAs. Master’s thesis, ETH Zurich, Dept. of Computer Science, Systems Group,

Switzerland, 2013.

[9] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J., UR RAHMAN, M. W., ISLAM, N. S., OUYANG, X., WANG, H., SUR, S., AND

PANDA, D. K. Memcached design on high performance rdma capable interconnects. 2012 41st International Conference on Parallel Processing 0

(2011), 743–752.

[10] LANG, W., PATEL, J. M., AND SHANKAR, S. Wimpy node clusters: what about non-wimpy workloads? In DaMoN (2010), pp. 47–55.

[11] MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2 (1970),

78 –117.

[12] WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012).

[13] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing

SoC accelerators for memcached. InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New

York, NY, USA, 36-47.

Page 25

References

