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Current key-value stores (KVS) 

– State-of-the-art 

– Bottlenecks 

 

Dataflow architectures for KVS 

– Why dataflow architectures 

– Prototype architecture 

– Results 

– Limitations 
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Common middleware application to alleviate access bottlenecks on 

databases 

 

 

 

Most popular and most recent database contents are cached in main 

memory of a tier of x86 servers 

 

Provides the abstraction of an associative  

    memory 

– Values are stored or retrieved by sending the  

    associated key 

– GET(KEY) and SET(KET,VALUE) 

 

Memcached is a commonly used open source package for KVS  
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Key-Value Stores 

Memcached Web server 

Database Memcached Memcached 

server 

 GET(k): 

   receive(p); 

   k = parse(p); 

   a = hashKey(k); 

   v = readValue(a); 

   new_p = format(v); 

   send(new_p); 

 

Web server 
Web server 
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Hardware: 

 

 

 

Software 

– Each connection is represented as a 

struct (c) 

– Any event on the connection state is 

distributed to pthreads (via Libevent) 

– All worker threads run the same 

code (drive_machine()) 

• Loop over switch statement over the 

connection state   

• Locks on sockets, hash table, and 

value store areas/items 
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Typical Implementations 

motherboard 

DRAM x86 

network 

adapter 

nc 10G if 

drive_machine(): 

while (!stop) {         

   switch(c->state) { 

      case connection_waiting: 

      case connection_closing: 

       … 

      case new_command: 

         lock socket; 

         read from socket; 

         unlock socket;   

         parse; 

      case read_htable: 

         hash key; 

         lock hash table; 

         hash table access; 

         hash table LRU; 

         unlock hash table;  

      case write_output: 

      … 

 

drive_machine(): 

while (!stop) {         

   switch(c->state) { 

      case connection_waiting: 

      case connection_closing: 

       … 

      case new_command: 

         lock socket; 

         read from socket; 

         unlock socket;   

         parse; 

      case read_htable: 

         hash key; 

         lock hash table; 

         hash table access; 

         hash table LRU; 

         unlock hash table;  

      case write_output: 

      … 

 

drive_machine(): 

while (!stop) {         

   switch(c->state) { 

      case connection_waiting: 

      case connection_closing: 

       … 

      case new_command: 

         lock socket; 

         read from socket; 

         unlock socket;   

         parse; 

      case read_htable: 

         hash key; 

         lock hash table; 

         hash table access; 

         hash table LRU; 

         unlock hash table;  

      case write_output: 

      … 

 

drive_machine(): 

while (!stop) {         

   switch(c->state) { 

      case connection_waiting: 

      case connection_closing: 

       … 

      case new_command: 

         lock socket; 

         read from socket; 

         unlock socket;   

         parse; 

      case read_htable: 

         hash key; 

         lock hash table; 

         hash table access; 

         hash table LRU; 

         unlock hash table;  

      case write_output: 

      … 

 

Thread 0  … thread n-1 
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Best Published Performance Numbers 
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Platform RPS [M] Latency [us] RPS/W [K] 

Intel® Xeon® (8 cores)* 1.34 200-300 7 

Intel Xeon (2 sockets, 16cores)* 3.15 200-300 11.2 

Memcached with Infiniband & 

Intel Xeon (2 sockets, 16cores)** 

1.8 12 Unknown 

TilePRO (64 cores)*** 0.34 200-400 3.6 

TilePRO (4x64 cores)*** 1.34 200-400 5.8 

Chalamalasetti (FPGA)**** 0.27 2.4-12 30.04 

200us latency 

7K 

1.4MRPS 

* WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012). 

**JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J., UR RAHMAN, M. W., ISLAM, N. S., OUYANG, X., WANG, H., SUR, S., AND PANDA, D. K. Memcached design on high 

performance rdma capable interconnects. 2012 41st International Conference on Parallel Processing 0 (2011), 743–752. 

*** BEREZECKI, M., FRACHTENBERG, E., PALECZNY, M., AND STEELE, K. Power and performance evaluation of memcached on the tilepro64 architecture. In Green Computing 

Conference and Workshops (IGCC), 2011 International (July 2011), pp. 1 –8. 

**** Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached. 

InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.  
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CPU intensive 

 

 

 

Frequent interrupts* 

– Leads to high rate of instruction cache misses (up to 160 MPKI) 

• Requires much larger L1 instruction caches 

– Causes poor branch predictability 

• Stalls in the superscalar pipeline architecture of standard x86 

 

High latency* 

– Packets have to be DMA’ed from/to network adapter over the PCIe® bus which 

introduces high latency 
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Bottlenecks – TCP/IP Stack 

CPI: 2.5 

Total: 45%us, 113%sy, 0%ni,  534%id,  0%wa,  0%hi, 109%si,  0%st 

* Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC 

accelerators for memcached. InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-

47.  

 

=> No resource sharing between memcached and TCP/IP stack 

=> Close integration of network, compute and memory 

*Top (while running 4 memcached instances 
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Threads stall on memory locks 

1. Large locks effectively serialize execution 

2. Synchronization races cause poor branch predictability 

– This leads to inefficient use of superscalar pipelines 

– Intel has shown that by improving the granularity of the locks, we can scale to 1.4 

MRPS (from 0.2MRPS)* 

 

Last level cache ineffective due to random-access nature of key-value-

stores (miss rate 60% - 95%**) 

– Multithreading can’t effectively hide memory access latencies 

– Cause considerable power waste 

 

 

Page 7 

Bottlenecks –  
Synchronization Overhead and L3 Cache 

* WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012). 

** Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached. 

InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.  

=> Exploitation of instruction-level parallelism through data-flow architectures 

=> Static memory access schedule eliminates memory arbitration conflict 

=> Data caching is ineffective 
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Memcached is fundamentally a streaming problem 

– Data is moved from network to memory and back with little compute 

 

 

 

 

 

 

 

 

 

 

 

As such, dataflow architectures, frequently used for network processing, should 

be well suited towards the application  

– Higher performance 

– Lower power consumption 
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Why Dataflow Architectures? 

 Program: 

   receive(p); 

   k = parse(p); 

   a = hashKey(k); 

   v = readValue(a); 

   new_p = format(v); 

   send(new_p); 

 

DRAM 

Network 

Interface 

(10Gbps Ethernet) 

Processing 
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Proposed System Architecture 
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motherboard 

DRAM x86 

network 

adapter 

Memcached 

10G if 
FPGA 

Network stack 

DRAM 

 

Memcached: 

Memory allocation* 

 

General: 

Configuration 

Control 

 

*below 3% of 1 core for 10% SET operations 

*limited memory access bandwidth on platform 

Dataflow architecture 

to increase throughput 

Tight integration of 

network, compute 

and memory to lower 

latency 

Completely separate 

TCP/IP stack to stop 

interference with 

application 
Some functionality is 

offloaded onto the 

x86 
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FPGA-based Dataflow Architecture 
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Request  

Parser 

Response 

Formatter 

Hash 

Table 
Value Store 

DRAM Controller 

UDP/TCP 

Offload Engines 
PCI DMA 

Network 

Interface 

(10Gbps Ethernet) 

DRAM 

 

 

Standardized interface: 

Key, value, meta-data 

FPGA 

Hash 

Table 

Value 

Store 
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FPGA-based Dataflow Architecture 
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Request  

Parser 

Response 

Formatter 

Hash 

Table 
Value Store 

DRAM Controller 

UDP/TCP 

Offload Engines 
PCI DMA 

Network 

Interface 

(10Gbps Ethernet) 

DRAM 

 

 

FPGA 

Hash 

Table 

Value 

Store 

Up to 23 packets 

reside 

concurrently in 

the pipeline 

=> Exploiting instruction-level parallelism increases throughput, lowers latency 

     and is more power efficient 

=> Inherently scalable 

Memcached Processing Pipeline 

(Latency: 481 cycles @ 156MHz vs 0.5-1Million cycles @ 2GHz 

TCP/IP: 292, Memcached-TCP/IP: 189) 
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Collision handling through parallel lookup (8-way) 

– Suits the wide memory bus 

Flexible key handling through striping 
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Hash Table Architecture 
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Design tradeoffs 

 

 

 

 

 

 

 

 

Size for hash table <400MB  

– Key limit is 168 byte (memcached max: 250B, most use-cases <50B) 

On our platform this hash table manages 23.6GB of value storage 

Hash Table Dimensions 

+Bandwidth 

-Collisions 

+
F

le
x
ib

ili
ty

 

-S
to

ra
g
e
 e

ff
ic

ie
n
c
y
 

8 parallel items 

168B keys 

2 Million Entries 
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System Test Setup 

Standard x86 

Memcached client   

Standard x86 

Memcached 

server 

FPGA 

Memcached 

server 
Spirent Network Tester/ 

NetFPGA-10G 
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System Test Setup 

Reproducing 

standard 

performance 

results 

Spirent Network Tester/ 

NetFPGA-10G 

Testing 

functionality 

Performance 

Testing 

Standard Intel I7 

Memcached 

server 

Standard Intel I7 

Memcached 

client 

(Memslap etc...) 

FPGA-based 

Memcached 

server 

10G Ethernet 

links 

NetFPGA-10G 

Spirent 

TestCenter 
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Power - Test Setup & Results 

Test system 2: without FPGA board Test system 1: with FPGA board 

*(Power sourced from: power plug meter, xpower, data sheets and power regulator readings) 

**(UDP, binary protocol) 

***(includes FPGA and host system) 
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Results - Performance 

* UDP, GET, BINARY 

FPGA delivers 

constant 10Gbps 

performance – 

network becomes the 

bottleneck 

X86 performance 

limited by a per 

packet overhead 

Set performance 

saturates network as 

well 
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Higher is better 
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Sustained line rate processing for 10GE – 13MRPS possible, at smallest packet size 

– Significant improvement over latest x86 numbers 

 

Lower power 

 

Combined: 36x in RPS/Watt with low variation 

 

Cutting edge latency  

– microseconds instead of 100s of microseconds 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Results of Memcached Evaluation 
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Platform RPS [M] Latency [us] RPS/W [K] 

Intel Xeon (8 cores) 1.34 200-300 7 

TilePRO (64 cores) 0.34 200-400 3.6 

FPGA (board only) 13.02 3.5-4.5 254.8 

FPGA (with host) 13.02 3.5-4.5 106.7 
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Code Complexity 
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Request  

Parser 

Response 

Formatter 

Hash 

Table 
Value Store 

DRAM Controller 

UDP/TCP 

Offload Engines 
PCI DMA 

Network 

Interface 

(10Gbps Ethernet) 

DRAM 

 

 

Standardized interface: 

Key, value, meta-data 

FPGA 

Hash 

Table 

Value 

Store 

3,444 LOC 3,415 LOC 2,336 LOC 2,941 LOC 

Total: 16k LOC 

vs 10k LOC 

LOC = Lines of Code 



© Copyright 2013 Xilinx 
. 

Hardware design exposes a greater complexity to the user and requires therefore 

more engineering effort 

HLS reduces the complexity and shortens the development effort 
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Limitations 
Development Effort 

Design spec 

In HDL 

C-based  

design 

Bitstream 

High-Level 

Synthesis 

Synthesis 

Place&Route 

Meeting physical 

constraints 

Simulation 

Qualitative graph only * UDP, GET, BINARY 

=> Greater performance at expense of larger development effort 

=> Exploration of how HLS can reduce the cost 
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Hardware design exposes a greater complexity to the user and requires therefore 

more engineering effort 

HLS reduces the complexity and shortens the development effort 
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Limitations 
Development Effort 

Qualitative graph only * UDP, GET, BINARY 

=> Greater performance at expense of larger development effort 

=> Exploration of how HLS can reduce the cost 
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TCP offload restricted to #sessions 

=> Future investigation into high session count TOE 

 

Limited storage capacity 

=> SSD 

 

Memory allocation & cache management on host CPU 

    Limited collision handling 

    Limited protocol support 

=> Exploration of SoC architecture 

 

 

Other Limitations 
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Dataflow architecture delivers 10Gbps line-rate performance and 

scalability to higher rates 

 

Significantly higher RPS/Watt, with that lower TCO 

 

Minimal latency 

 

HLS reduces the complexity and shortens the development effort 

 

Next Steps: 

– Address limitations 

– Trials with real use cases 

  

 

 

 

Summary & Next Steps 
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Thank You. 

mblott@xilinx.com 
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