EXILINXALL PROGRAMMABLE

Dataflow Architectures for 10Gbps Line-rate Key-value-Stores

Michaela Blott, Kees Vissers - Xilinx Research

© Copyright 2013 Xilinx

Agenda

Current key-value stores (KVS)

- State-of-the-art
- Bottlenecks

Dataflow architectures for KVS

- Why dataflow architectures
- Prototype architecture
- Results
- Limitations

Key-Value Stores

Common middleware application to alleviate access bottlenecks on databases

- Most popular and most recent database contents are cached in main memory of a tier of x86 servers
- Provides the abstraction of an associative memory
 - Values are stored or retrieved by sending the associated key
 - GET(KEY) and SET(KET,VALUE)

GET(k): receive(p); k = parse(p);a = hashKey(k);v = readValue(a);new p = format(v); send(new p);

> Memcached is a commonly used open source package for KVS

Typical Implementations

> Hardware:

XILINX > ALL PROGRAMMABLE.

Best Published Performance Numbers

Platform	RPS [M]	Latency [us]	RPS/W [K]	
Intel [®] Xeon [®] (8 cores)*	1.34	200-300	7	7K
Intel Xeon (1 4MRPS)*	3.15	200-300	11.2	
Memcached	1.8	12 200us late		
TilePRO (64 cores)***	0.34	200 -400	5.0	
TilePRO (4x64 cores)***	1.34	200-400	5.8	
Chalamalasetti (FPGA)****	0.27	2.4-12	30.04	

* WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012).

**JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J., UR RAHMAN, M. W., ISLAM, N. S., OUYANG, X., WANG, H., SUR, S., AND PANDA, D. K. Memcached design on high performance rdma capable interconnects. 2012 41st International Conference on Parallel Processing 0 (2011), 743–752.

**** Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.

XII INX > ALL PROGRAMMABLE.

^{***} BEREZECKI, M., FRACHTENBERG, E., PALECZNY, M., AND STEELE, K. Power and performance evaluation of memcached on the tilepro64 architecture. In Green Computing Conference and Workshops (IGCC), 2011 International (July 2011), pp. 1 –8.

Bottlenecks – TCP/IP Stack

CPU intensive

Tota	1:	4 5% us ,	113%sy,	0%ni,	534%id,	08wa,	0%hi,	109%si,	0%st
Mom	¢	5859040k t	total 38'	20060k u	ad 2020	080k free	29350	94k buffer	c
Cpu7	:	7.7%us,	15.4%sy,	0.0%ni,	73.1%id,	0.0%wa,	0.0%hi,	3.8%si,	0.0%st
Cpu6	:	0.0%us,	0.0%sy,	0.0%ni,	100.0%id,	0.0%wa,	0.0%hi,	0.0%si,	0.0%st
Cpu5	:	1.9%us,	11.5%sy,	0.0%ni,	84.6%id,	0.0%wa,	0.0%hi,	1.9%si,	0.0%st
Cpu4	:	18.9%us,	56.6%sy,	0.0%ni,	13.2%id,	0.0%wa,	0.0%hi,	11.3%si,	0.0%st
Cpu3	:	3.6%us,	0.0%sy,	0.0%ni,	96.4%id,	0.0%wa,	0.0%hi,	0.0%si,	0.0%st
Cpu2	:	4.9%us,	6.6%sy,	0.0%ni,	86.9%id,	0.0%wa,	0.0%hi,	1.6%si,	0.0%st
Cpu1	:	5.7%us,	13.2%sy,	0.0%ni,	77.4%id,	0.0%wa,	0.0%hi,	3.8%si,	0.0%st
Cpuo	:	I.9%us,	9.6%sy,	0.0%n1,	I.9%1d,	0.0%wa,	0.0%n1,	80.5%Sl,	0.0%ST

> Frequent interrupts*

- Leads to high rate of instruction cache misses (up to 160 MPKI)
 - Requires much larger L1 instruction caches
- Causes poor branch predictability
 - Stalls in the superscalar pipeline architecture of standard x86

High latency*

 Packets have to be DMA'ed from/to network adapter over the PCIe[®] bus which introduces high latency

No resource sharing between memcached and TCP/IP stack
 Close integration of network, compute and memory

*Top (while running 4 memcached instances

© Copyright 2013 Xilinx

Bottlenecks – *Synchronization Overhead and L3 Cache*

> Threads stall on memory locks

- 1. Large locks effectively serialize execution
- 2. Synchronization races cause poor branch predictability
- This leads to inefficient use of superscalar pipelines
- Intel has shown that by improving the granularity of the locks, we can scale to 1.4 MRPS (from 0.2MRPS)*
- Last level cache ineffective due to random-access nature of key-valuestores (miss rate 60% - 95%**)
 - Multithreading can't effectively hide memory access latencies
 - Cause considerable power waste

=> Exploitation of instruction-level parallelism through data-flow architectures
 => Static memory access schedule eliminates memory arbitration conflict
 => Data caching is ineffective

Why Dataflow Architectures?

- > Memcached is fundamentally a streaming problem
 - Data is moved from network to memory and back with little compute

- > As such, dataflow architectures, frequently used for network processing, should be well suited towards the application
 - Higher performance
 - Lower power consumption

Proposed System Architecture

*below 3% of 1 core for 10% SET operations *limited memory access bandwidth on platform

XILINX > ALL PROGRAMMABLE.

FPGA-based Dataflow Architecture

ilinx 🛛 🗧 🕻 XILINX 🄰 ALL PROGRAMMABLE..

FPGA-based Dataflow Architecture

 => Exploiting instruction-level parallelism increases throughput, lowers latency and is more power efficient
 => Inherently scalable

XII INX > ALL PROGRAMMABLE.

Hash Table Architecture

> Collision handling through parallel lookup (8-way)

- Suits the wide memory bus
- > Flexible key handling through striping

Hash Table Dimensions

Size for hash table <400MB</p>

Key limit is 168 byte (memcached max: 250B, most use-cases <50B)

> On our platform this hash table manages 23.6GB of value storage

System Test Setup

System Test Setup

Power - Test Setup & Results

Test system 1: with FPGA board

Test system 2: without FPGA board

XII INX > ALL PROGRAMMABLE.

*(Power sourced from: power plug meter, xpower, data sheets and power regulator readings) **(UDP, binary protocol)

***(includes FPGA and host system)

© Copyright 2013 Xilinx

Results - Performance

First Results of Memcached Evaluation

- > Sustained line rate processing for 10GE 13MRPS possible, at smallest packet size
 - Significant improvement over latest x86 numbers
- > Lower power
- > Combined: 36x in RPS/Watt with low variation
- > Cutting edge latency
 - microseconds instead of 100s of microseconds

Platform	RPS [M]	Latency [us]	RPS/W [K]	
Intel Xeon (8 cores)	1.34	200-300	7	
TilePRO (64 cores)	0.34	200-400	3.6	
FPGA (board only)	13.02	3.5-4.5	254.8	
FPGA (with host)	13.02	3.5-4.5	106.7	

XII INX > ALL PROGRAMMABLE.

Code Complexity

© Copyright 2013 Xilinx

XILINX > ALL PROGRAMMABLE...

Limitations Development Effort

- > Hardware design exposes a greater complexity to the user and requires therefore more engineering effort
- > HLS reduces the complexity and shortens the development effort

🗶 XILINX 🕨 ALL PROGRAMMABLE.

=> Greater performance at expense of larger development effort
 => Exploration of how HLS can reduce the cost

Limitations Development Effort

- > Hardware design exposes a greater complexity to the user and requires therefore more engineering effort
- > HLS reduces the complexity and shortens the development effort

=> Greater performance at expense of larger development effort => Exploration of how HLS can reduce the cost

© Copyright 2013 Xilinx

XILINX > ALL PROGRAMMABLE.

Other Limitations

> TCP offload restricted to #sessions

=> Future investigation into high session count TOE

Limited storage capacity => SSD

Memory allocation & cache management on host CPU Limited collision handling Limited protocol support => Exploration of SoC architecture

Summary & Next Steps

Dataflow architecture delivers 10Gbps line-rate performance and scalability to higher rates

Significantly higher RPS/Watt, with that lower TCO

> Minimal latency

> HLS reduces the complexity and shortens the development effort

> Next Steps:

- Address limitations
- Trials with real use cases

ALL PROGRAMMABLE

Thank You. mblott@xilinx.com

© Copyright 2013 Xilinx

References

[1] ARVIND, AND NIKHIL, R. Executing a program on the mittagged-token dataflow architecture. Computers, IEEE Transactions on 39, 3 (March 1990), 300–318.

[2] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND PALECZNY, M. Workload analysis of a large-scale key-value store. SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–64.

[3] BANDO, M., ARTAN, N., AND CHAO, H. Flashlook: 100-gbps hash-tuned route lookup architecture. In High Performance Switching and Routing, 2009. HPSR 2009. International Conference on (June 2009), pp. 1–8.

[4] BEREZECKI, M., FRACHTENBERG, E., PALECZNY, M., AND STEELE, K. Power and performance evaluation of memcached

on the tilepro64 architecture. In Green Computing Conference and Workshops (IGCC), 2011 International (July 2011), pp. 1 –8.

[5] CONG, J., LIU, B., NEUENDORFFER, S., NOGUERA, J., VISSERS, K., AND ZHANG, Z. High-level synthesis for fpgas:

From prototyping to deployment. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 30, 4 (April 2011), 473 – 491.

[6] FERDMAN, M., ADILEH, A., KOCBERBER, O., VOLOS, S., ALISAFAEE, M., JEVDJIC, D., KAYNAK, C., POPESCU, A. D., AILAMAKI, A., AND FALSAFI, B. Clearing the clouds: a study of emerging scale-out workloads on modern hardware. SIGARCH Comput. Archit. News 40, 1 (Mar. 2012), 37–48.

[7] HETHERINGTON, T. H., ROGERS, T. G., HSU, L., O'CONNOR, M., AND AAMODT, T. M. Characterizing and evaluating a key-value store application on heterogeneous cpu-gpu systems. In Proceedings of the 2012 IEEE International Symposium on Performance Analysis of Systems & Software (Washington, DC,

USA, 2012), ISPASS '12, IEEE Computer Society, pp. 88-98.

[8] ISTVAN, Z. Hash Table for Large Key-Value Stores on FPGAs. Master's thesis, ETH Zurich, Dept. of Computer Science, Systems Group, Switzerland, 2013.

[9] JOSE, J., SUBRAMONI, H., LUO, M., ZHANG, M., HUANG, J., UR RAHMAN, M. W., ISLAM, N. S., OUYANG, X., WANG, H., SUR, S., AND PANDA, D. K. Memcached design on high performance rdma capable interconnects. 2012 41st International Conference on Parallel Processing 0 (2011), 743–752.

[10] LANG, W., PATEL, J. M., AND SHANKAR, S. Wimpy node clusters: what about non-wimpy workloads? In DaMoN (2010), pp. 47–55.
[11] MATTSON, R., GECSEI, J., SLUTZ, D., AND TRAIGER, I. Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2 (1970), 78–117.

[12] WIGGINS, A., AND LANGSTON, J. Enhancing the scalability of memcached. In Intel Software Network (2012).

[13] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F. Wenisch. 2013. Thin servers with smart pipes: designing SoC accelerators for memcached. InProceedings of the 40th Annual International Symposium on Computer Architecture (ISCA '13). ACM, New York, NY, USA, 36-47.

XII INX > ALL PROGRAMMABLE.