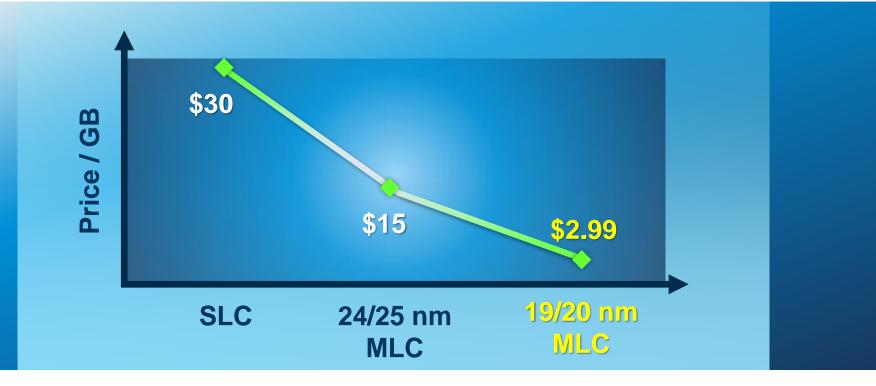


Design challenges in building an Advanced NAND Flash Array controller for 19/20 nm MLC

Radoslav Danilak, Ph.D. Founder and CEO Skyera Inc.

© 2013 Skyera Inc.

Evolution of NAND Flash


			o (1112) o (1112) ##	
	SSD	Card	Appliance	Primary
Purpose	 HDD replacement Plug and play 	 Server cache 	 High performance Special uses 	 Shareable Scalable Affordable
	 Encumbered by HDD protocols 	 Direct Attached Storage 	 Doesn't scale Expensive to manage 	 Built from ground-up

Enterprise Adoption of Flash is Limited Because of High Cost

The High Cost of Older Technology \$\$ skyera

Latest Generation Flash Breaks the Cost Barrier

19/20 nm MLC Flash breaks the cost barrier

- Optimized for high density/low cost: < 60¢/GB

But what about endurance?

- Degrades rapidly with geometry
- 19/20 nm MLC few thousand writes

Enterprise requires 100x more write endurance

100x Life Amplification of Latest Generation of Flash

- Minimize writes to the Flash
- New RAID algorithm
- New DSP/ECC
- Adaptive reads and writes
- Device physics manipulation

Optimize the Storage Stack

System

- Compression, de-duplication, encryption in hardware to minimize writes to the flash

RAID

- Must achieve better than RAID-6 reliability with much fewer writes to flash

Flash Controller

- Develop more sophisticated DSP and ECC algorithms

FTL

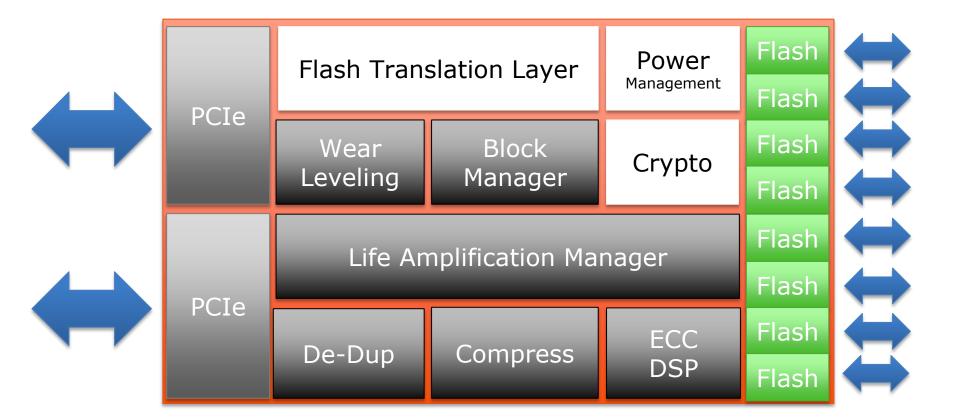
- Flash physics manipulation to optimize for system-wide wearleveling
- Adaptive reads and writes based on usage patterns

Create a System-Level Flash Controller 🔅 skyera

Proprietary algorithms extend MLC life to 5 years

- No existing flash memory controller can achieve this
- Life Amplification[™] reduces damage to flash oxide layer

SSD Lifetime = Endurance * Capacity Throughput * Duty Cycle * Write% * Write Amplification


Skyera SSD Lifetime = $\frac{3K * 1TB* (Life Amplification^1)}{370MBps* 80\% * 30\%} = 5$ years

ASIC investment in Flash Memory Controller

¹ Life amplification is equivalent to 100x lower than industry standard 5x write amplification

Flash Memory Controller

Flash Translation Layer

- Page-based flash translation layer
- Power fail protection
- Multi-processor concurrency
- Designed to support read retry
- Extremely low write amplification
- Native support for in-line de-dup and compression

Flash Memory Management

- Life Amplification Management
- Native support for snapshot & cloning
- ✤ 256-bit AES encryption
- Abstracted interface for advanced Flash operation

Questions...