
Measuring the Gap between Programmable and Fixed-Function
Accelerators: A Case Study on Speech Recognition

Yunsup Lee, David Sheffield, Andrew Waterman, Michael Anderson, Kurt Keutzer, Krste Asanović
University of California, Berkeley

{yunsup,dsheffie,waterman,mjanders,keutzer,krste}@eecs.berkeley.edu

1. Introduction
As power and energy consumption have become the key design
constraint of mobile systems, mobile system-on-chip (SoC) archi-
tects have dedicated a progressively larger area budget to custom
accelerators: graphics processors, audio/video codecs, and image
signal processors abound. Fixed-function accelerators now occupy
more than half of the die area of these chips [2], and we foresee this
trend only to progress in the near future. Indeed, for applications
that have adopted a well-defined standard, constructing dedicated
fixed-function accelerators may prove to be the best approach [5].
But for applications that are not standardized and are still in flux,
we ask: Is building fixed-function accelerators the right answer,
or should dedicated accelerators become more programmable? To
this end, we first measure the performance and energy consump-
tion gap between programmable and fixed-function accelerators for
automatic speech recognition (ASR), an application that is not yet
standardized but whose adoption is on on the near horizon. We then
analyze these results to gain insight into this problem.

Several hardware-based ASR solutions have been proposed dur-
ing the last 30 years [8, 9]. These approaches claim performance or
energy benefits of 10 to 100× over a conventional microprocessor.
However, these approaches employ an inflexible design process in
which high-level algorithmic design decisions are hard-coded into
a low-level implementation.

Constructing functional prototypes of ASR systems for both
programmable and fixed-function accelerators is a daunting prospect
as each target requires a radically different set of programming and
design tools. To make the problem of exploring this vast design
space tractable—and, more importantly, fair—we use the Three
Fingered Jack (TFJ) system [11] to take the same code and auto-
matically generate key components of our speech recognition sys-
tem to target both accelerators. TFJ takes Python loop nests as an
input and can generate C++ code for CPUs, vectorized C++ code
for data-parallel processors, and Verilog RTL for fixed-function
accelerators.

Through detailed hardware simulations using methodologies
described in [3], we produce accurate estimates for energy and
performance. We show that for ASR, fixed-function accelerators
are 2.4× and 3.6× more energy efficient than a highly-optimized
data-parallel processor and scalar processor, respectively. Detailed
analysis shows operand delivery consumes approximately the same
amount of energy for the fixed-function and programmable solu-
tions. The gap between the scalar processor and the fixed-function
hardware is mostly attributable to instruction fetch energy and static
energy (since the scalar processor is slower). The data-parallel pro-
cessor helps close the gap by amortizing instruction delivery energy
and running faster, reducing static energy.

2. Setup
An ASR application accepts an utterance as an input waveform
and infers the most likely sequence of words and sentences in
that utterance. Our ASR system is built on top of the ICSI Par-
allex decoder [4]. As shown in Figure 1, Parallex is built around
a hidden Markov model (HMM) inference engine with a beam

search approximation and may be easily decomposed into feature
extraction and an inference engine. Feature extraction generates 39-
dimensional MFCCs for each 10ms frame. These are fed to the in-
ference engine to recognize words and sentences. The inference en-
gine has two key phases: observation probability calculation using
a Gaussian Mixture Model (GMM), and a graph-based knowledge
network search (see Figure 2 and 3). The GMM computes the ob-
servation probabilities of atomic units of speech in a given acoustic
sample. These observation probabilities are used by the HMM to
compute the most likely sequence of words using the Viterbi search
algorithm. We use a beam search approximation to prune the search
space. The profiling results led us to focus our efforts on the GMM
and across-word transition kernels, as they consume 60% and 25%
of the run-time, respectively.

2.1 Three Fingered Jack
We use Three Fingered Jack (TFJ) to explore implementations of
speech kernels across multicore CPUs, data-parallel processors,
and custom generated hardware. TFJ applies ideas from optimiz-
ing compilers, such as dependence analysis and reordering trans-
formations [1], to a subset of Python loop nests. The TFJ compila-
tion process begins with a dense loop nest specified in Python using
NumPy arrays. TFJ then uses dependence analysis to compute valid
partial orderings of the loop-nest to unlock parallelism.

After extracting parallelism, separate backends are used to gen-
erate code for multicore CPUs, data-parallel processors, and cus-
tom hardware. The multicore CPU backend and the data-parallel
processor backend generates C++ with intrinsics for its target ar-

MFCC
features GMM HMM search

Phoneme
scores

Active phoneme list

Recognized
utterances

Figure 1: Architecture of our speech recognizer.

def GMM(In, Mean, Var, Out, Idx, n):
for i in range(0,n):

for f in range(0,39):
for m in range(0,16):

ii = Idx[i];
Out[ii][m] += (In[f]-Mean[ii][f][m])*(In[f]-Mean[

ii][f][m])*(Var[ii][f][m]);

Figure 2: GMM-based observation probability evaluation kernel

def acrossword(..):
for i in range(0,num):

thisStateID = endsQ_stateID[i];
endsWordID = Chain_wpID[thisStateID];
for b in range(0, bSize[endsWordID]):

w = nxtID[b+bffst[endsWordID]];
t = prob[b+bffst[endsWordID]] +

endsQ_likelihood[i] + Chain_fwrdProb[
thisStateID];

bigramBuf[w] = t;
lock(step4_lck[w]);
if(bigramBuf[w] < likelihood[w]):

likelihood[w] = t;
updateIndices[w] = i;

unlock(step4_lck[w]);

Figure 3: Across-word search kernel

1.
3

m
m

1.3 mm

Rocket scalar
processor

Data cache

Instruction
 cache Hwacha

vector unit

(a) Hwacha vector processor

PE 0

PE 1

Interconnect

Data
cache

0.
4

m
m

0.4 mm

(b) GMM accelerator

0.
35

 m
m

0.35 mm

PE 0 PE 1

Interconnect

Data cache

(c) Across-word search accelerator

Features
(a) 1 SFMA, 8 SCMP,

1 DFMA, 8 DCMP
833 MHz Max
213188 Gates, 1.7 mm2

(b) 2 SMUL, 2 SADD
920 MHz Max
38294 Gates, 0.16 mm2

(c) 2 SADD, 2 SCMP
860 MHz Max
19544 Gates, 0.13 mm2

(d) Statistics

Figure 4: VLSI layouts. The scales are listed in the layout for each accelrator. S prefix = single-precision, D prefix = double-precision. FMA suffix =
floating-point fused multiply add, ADD suffix = floating-point add, MUL suffix = floating-point multiply, CMP suffix = floating-point compare.

chitecture. The custom hardware backend automatically generates
fixed-function hardware by mapping the intermediate representa-
tion produced by TFJ’s reordering engine to a control FSM and col-
lection of functional units. The fixed-function hardware generated
by TFJ uses a memory tagging scheme to support a non-blocking
memory system. Dependence analysis allows TFJ to schedule
many overlapping memory operations. The caches used with TFJ-
generated hardware support atomic-memory operations for fine-
grained locking in non-data-parallel code, such as the across-word
kernel (Figure 3) used in this study.

2.2 Rocket-Hwacha Vector Processor
We used the in-order decoupled RISC-V 5-stage Rocket processor
as our baseline CPU [12]. To evaluate data-parallel solutions, we
used the Hwacha data-parallel accelerator with Rocket as its scalar
control processor. The Hwacha data-parallel accelerator integrates
ideas from both vector-thread [6, 7] and conventional data-parallel
processors to achieve high performance and energy efficiency. TFJ
was used to generate optimized implementations for Rocket and
Hwacha. The resulting kernels were compiled using GCC 4.6.1.

2.3 VLSI Flow
We targeted TSMC’s 45nm GP CMOS library using a Synopsys-
based ASIC toolchain. We used logic simulation to extract cy-
cle counts and back-annotated simulation to record power for all
platforms. The HW accelerators have direct-mapped 4 KB caches
while the processors have a 32 KB 4-way set-associative L1 data
cache and a 16 KB 2-way set-associative L1 instruction cache. All
configurations include a 256 KB 8-way set-associative L2 cache.
Cacti [10] was used to generate SRAM macros.

3. Results and Conclusions
To make our study complete, we have included images of VLSI lay-
out from IC Compiler for our vector processor, GMM accelerator,
and across-word traversal accelerator (see Figure 4). More detailed
statistics of each design are listed in Table 4(d). Figure 5 shows the
detailed energy breakdown of GMM and across-word search ker-
nels running on each of our platforms. The bar on the left shows the
energy consumption in the core, L1 caches, and the L2 caches. The
bar on the right breaks down the energy into dynamic and static
portions. Running ASR on fixed-function accelerators is 2.4× and
3.6× more energy efficient than running on a data-parallel proces-
sor and a simple scalar processor, respectively. The data-parallel
processor is able to reduce the energy consumption in the core as it
is able to amortize instruction delivery costs across many elements
in a vector. It also runs faster, reducing static energy.

The fixed-function accelerator can further reduce core energy,
but the memory system becomes the new energy bottleneck. Had
we included DRAM energy, the fixed-function accelerator’s advan-
tage would have been further diminished.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 GMM-Rocket GMM-Hwacha GMM-HW AcrossWord-Rocket AcrossWord-HW

E
ne

rg
y

(J
)

L2$ L1$ Core Static Dynamic

Figure 5: Energy breakdown of GMM and across-word search kernels
running on programmable and fixed-function accelerators.

These results guide us to take a holistic approach spanning from
applications to hardware when approaching the dark silicon era.
We plan to develop new algorithms that specialize and optimize
communication along with computation to minimize energy con-
sumption in the memory system. We believe that pattern-based
data-parallel processors, which incorporate fixed-function compute
units, will be able to close the gap between programmable and
fixed-function accelerators.

Acknowledgments
Research funded by DARPA Award Number HR0011-12-2-0016.
Approved for public release; distribution is unlimited. The content
of this paper does not necessarily reflect the position or the policy of
the US government and no official endorsement should be inferred.

References
[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Archi-

tectures. Morgan Kaufmann, 2002.
[2] AnandTech. LG Optimus 2X & NVIDIA Tegra 2 Review.
[3] H. Bhatnagar. Advanced ASIC Chip Synthesis Using Synopsys Design

Compiler Physical Compiler and PrimeTime. Springer, 2001.
[4] J. Chong et al. Exploring recognition network representations for

efficient speech inference on highly parallel platforms. IS, 2010.
[5] J. A. Fisher et al. Embedded computing: a VLIW approach to archi-

tecture, compilers and tools. Elsevier, 2004.
[6] R. Krashinsky et al. The vector-thread architecture. ISCA, 2004.
[7] Y. Lee et al. Exploring the tradeoffs between programmability and

efficiency in data-parallel accelerators. ISCA, 2011.
[8] E. C. Lin et al. Moving speech recognition from software to silicon:

the in silico vox project. IS, 2006.
[9] B. Mathew et al. A low-power accelerator for the sphinx 3 speech

recognition system. CASES ’03, pages 210–219.
[10] N. Muralimanohar et al. Cacti 6.0: A tool to model large caches. HP

Laboratories, 2009.
[11] D. Sheffield et al. Automatic generation of application-specific accel-

erators for fpgas from python loop nests. FPL, 2012.
[12] A. Waterman et al. The RISC-V Instruction Set Manual, Volume I:

Base User-Level ISA. Number UCB/EECS-2011-62.

