
WhataFastFPUMeansforAlgorithms:
AStoryofVectorElementaryFunctions

Marat Dukhan
mdukhan3@gatech.edu

Evolution of Performance: FLOPS vs Table Lookups Background
Vector elementary functions are mathematical func-
tions, like log or exp, which independently operate
on elements of a vector. In the early 1990th S. Gal
and T.P.Tang suggested table-based algorithms with
reliably high accuracy, and their variants dominated
implementations of elementary functions since then.
These algorithms use low-order polynomial/rational
approximation of a function around tabulated pivot
points, and combine two desirable properties:

• By smartly designing lookup tables they
achieved good accuracy, and dense table values
permitted low-degree approximations.

• Low-degree approximations only need a few
FLOPs to evaluate, and result in good perfor-
mance, especially on poor FPUs of early 90th.

But FLOPS numbers gradually outgrew table
lookup metrics, making space for new algorithms.

Contribution
Over time, the balance between performance of
FPU and table lookups shifted towards more FPU
power. We bring two contributions which exploit
this change.

1. We suggest three design rules for high-
performance vector elementary functions (log,
exp, cos): they should avoid table lookups,
avoid division and square root operations in
favor of multiplication and addition, and avoid
branches in primary code path.

2. We evaluated the three design rules by im-
plementing and benchmarking an experimen-
tal library of vector elementary functions,
which demonstrates competitive performance
and accuracy. The library is available on
www.yeppp.info.

Rule 1: Avoid Table Lookups
Table lookups are hard to use with SIMD in-
structions. To perform a table lookup opera-
tion, first the indices are extracted from compo-
nents of SIMD register to general-purpose regis-
ters (alternatively, the index register can be stored
to memory and loaded into general-purpose reg-
isters element-by-element via store-load forward-
ing), then table lookups are performed and in-
dividual elements are loaded into different SIMD
registers, and finally the loaded lanes of SIMD
registers are combined with a shuffle instruction.

The total latency of such table lookup operations is
too high to hide it with software pipelining or out-of-
order execution. Although the recent Intel Haswell
microarchitecture provides a hardware GATHER in-
struction, it does not reduce the latency.

Rule 2: Avoid DIV/SQRT

While most processors can issue multiplication and
addition each cycle, division and square root are not
pipelined, and have much lower throughput. We
suggest that these operations should be avoided in
favor of polynomial approximations and Newton-
Raphson iterations.

Rule 3: Avoid Branches
Piecewise approximations are widely used in ele-
mentary functions algorithms to reduce the order
of polynomial approximation, but on modern pro-
cessors the associated branch misprediction cost is
prohibitively high, and the historical trend suggests
that the situation will not improve in the future.

For this reason we avoid piecewise approximations
and use branches only to detect special cases (such
as NaN or infinite input), which do not normally
happen and thus are predictable.

Support
This work was supported by my advisor, Richard
Vuduc, through The National Science Foundation
under NSF CAREER award number 0953100, The
U.S. Dept. of Energy, Office of Science, Advanced
Scientific Computing Research under award DE-
FC02-10ER26006/DE-SC0004915, and grants from
the DARPA Computer Science Study Group pro-
gram.

Conference Paper
Extended version will be presented on PPAM’13.

Results: log/Intel Haswell

Results: exp/AMD Piledriver


