AS

hpc

CONTRIBUTION

Over time, the balance between performance of
FPU and table lookups shifted towards more FPU
power. We bring two contributions which exploit
this change.

1. We suggest three design rules for high-
performance vector elementary functions (log,
exp, cos): they should avoid table lookups,
avold division and square root operations in
favor of multiplication and addition, and avoid
branches in primary code path.

2. We evaluated the three design rules by im-
plementing and benchmarking an experimen-
tal library of vector elementary functions,
which demonstrates competitive performance
and accuracy. The library is available on
wWwWw.yeppp.info.

RULE 1: AvoiD TABLE LOOKUPS

Table lookups are hard to use with SIMD in-
structions. To perform a table lookup opera-
tion, first the indices are extracted from compo-
nents of SIMD register to general-purpose regis-
ters (alternatively, the index register can be stored
to memory and loaded into general-purpose reg-
isters element-by-element via store-load forward-
ing), then table lookups are performed and in-
dividual elements are loaded into different SIMD
registers, and finally the loaded lanes of SIMD
registers are combined with a shuflle instruction.

L%t§ncy of table lookup operation (4x64-bit values)

..q_.-’

8 19.6 Implementation
f 16 ST-LD FWD
ﬁ B exTRACT
ﬁ f HARDWARE
(&)

>

O 0-

AMD Plledrlver Intel Sandy Bridge Intel Haswell

The total latency of such table lookup operations is
too high to hide it with software pipelining or out-ot-
order execution. Although the recent Intel Haswell
microarchitecture provides a hardware GATHER in-
struction, it does not reduce the latency.

CONFERENCE PAPER
Extended version will be presented on PPAM’13.

WHAT A FASTFPU MEANSFOR ALGORITHMS:
TORY OF VECTOR ELEMENTARY FUNCTIONS

Marat Dukhan
mdukhan3@gatech.edu

EvoLUTION OF PERFORMANCE: FLOPS vs TABLE LOOKUPS

o _ Core i7/Haswell
Ao | Multi-core i B Superscalar Execution Core i7/Sandy Bridge
QF B FMA Instructions: Pipelined Execution Core i7/Nehalem
+ SIMD Instructions Frequency Scaling Core 2 Duo
D (D]]] |
s O ; Core Duo
= :T.P.Tang S papers on Pentium 4
Q « Table-driven
8 0 .elementary functions
O~ ! Pentium Il
_g Pentium I
~ ; Pentium MMX
N = * Pentium Pr
& o—] [] [|
O = : . Pentium
e Table Lookups |
LL per second ol :,_
AR | 486‘ DX
—é 486 DiX L p—
O
387 DX
al s == e —
| | I I I
1990 1995 2000 2005 2010

Processor Release Date

RULE 2: AvoiD DIV /SQRT

RN
@)
I

S

_Cc)' qc) Operation
SE ADD
o210~

p=gm T muL
g .ADD + MUL
T 0

(@]

S8 5- ow
20

S 2 SQRT
o0

m N

AMD Bulldozerlntel Nehalem Intel Ivy Bridge Intel Haswell

While most processors can issue multiplication and
addition each cycle, division and square root are not
pipelined, and have much lower throughput. We
suggest that these operations should be avoided in
favor of polynomial approximations and Newton-
Raphson iterations.

SUPPORT

This work was supported by my advisor, Richard
Vuduc, through The National Science Foundation
under NSF CAREER award number 0953100, The
U.S. Dept. of Energy, Office of Science, Advanced
Scientific Computing Research under award DE-
FC02-10ER26006 /DE-SC0004915, and grants from
the DARPA Computer Science Study Group pro-
gram.

RULE 3: AvoiID BRANCHES

Piecewise approximations are widely used in ele-
mentary functions algorithms to reduce the order
of polynomial approximation, but on modern pro-
cessors the associated branch misprediction cost is
prohibitively high, and the historical trend suggests
that the situation will not improve in the future.

250 -
Haswell

N

o

o
I

RN

o))

o
I

Sandy Bridge

RN

o

(@)
|

Nehalem
Core 2

)
o
|

Pentium 4

Branch mispediction cost, FLOPs

Pentium M

0 - Penhur%nt'um Pro Pentium lll

1995 2000 2OI05 20I1O
Processor Release Date
For this reason we avoid piecewise approximations
and use branches only to detect special cases (such
as NaN or infinite input), which do not normally
happen and thus are predictable.

Georgia
ec

Te

h

BACKGROUND

Vector elementary functions are mathematical func-
tions, like log or exp, which independently operate
on elements of a vector. In the early 1990th S. Gal
and T.P.Tang suggested table-based algorithms with
reliably high accuracy, and their variants dominated
implementations of elementary functions since then.
These algorithms use low-order polynomial /rational
approximation of a function around tabulated pivot
points, and combine two desirable properties:

e By smartly designing lookup tables they
achieved good accuracy, and dense table values
permitted low-degree approximations.

e Low-degree approximations only need a few
FLOPs to evaluate, and result in good perfor-
mance, especially on poor FPUs of early 90th.

But FLOPS numbers gradually outgrew table
lookup metrics, making space for new algorithms.

RESULTS: LOG/INTEL HASWELL

Throughéaut of log function on Intel Core i7-4770K

Intel MKL/HA 11.0.3 -

Intel MKL/LA 11.0.3 - 6.3
Intel IPPvm/LA 7.1.1 - 7.5
Intel SVML/LA 13.1.1 (AVX vector) - 7.9
Intel IPPvm/HA 7.1.1 - 8.1
Intel SVML/HA 13.1.1 (AVX vector) - 12
> Intel SVML/LA 13.1.1 (SSE vector) - 14.4 Max
(S Intel SVML/HA 13.1.1 (SSE vector) - 15.8
I_C__) - 171 error
% AMD LibM 3.0.2 (scalar) - 26.6 (ULP)
$) Intel LibM 13.1.1 - 30.2 l 2.5
© - 34.1 20
- B 35.5
2 AMDLibM 3.0.2 (SSE vector) - 39.3 15
© AMD LibM 3.0.2 (vector) - 39.5 1.0
= 41.6 05
57.3
D 57.6
61.6
83.8
GNU LibM 2.17 - 93.6

156.4
(I) 5I0 1(I)0 1é0
Cycles per element (less is better)

REsuLTS: EXP/AMD PILEDRIVER

Throu5gghput of exp function on AMD FX-6300

Intel IPPvm/LA 7.1.1- [9.2
Intel IPPvm/EP 7.1.1 -

Intel SVML/LA 13.1.1 (AVX vector) - [13.-2

Intel MKL/HA 11.0.3 - 15.6

Intel MKL/LA 11.0.3 - 15.6

Intel MKL/EP 11.0.3 - 1156.67

Intel IPPVvM/HA 7.1.1 - :
gl tel SVML/LA 13.1.1 (SSE vector) - [N 18.6 gnr?;(r
O Intel SVML/HA 13.1.1 (AVX vector) - 204
= : 21.2 (ULP)
Sl tel SVML/HA 13.1.1 (SSE vector) - 21.2
5 AMD LibM 3.0.2 (vector) - 21.5 2.0
£ AMD LibM 3.0.2 (SSE vector) - 22 15
c Intel IPPs 7.1.1 - 34.2
© 37 1.0
= AMD LibM 3.0.2 (scalar) - 41.3 05

Intel LibM 13.1.1 - 45.4

GNU LibM 2.17 - 114
| | 1 1 1 |
0 25 50 75_ 100 125
Cycles per element (less is better)

