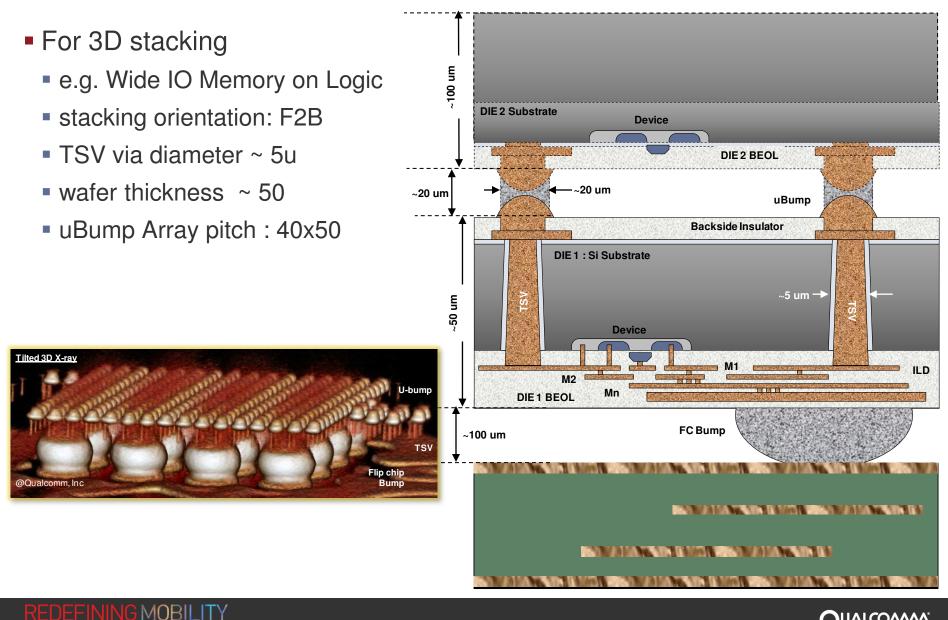
qctconnect.com

UALCOMM CDMA Technologies QUALCOMM CONFIDENTIAL AND PROPRIETARY

Roadmap for Design and EDA Infrastructure for 3D Products

Riko Radojcic	HotChips 2012
Qualcomm	Cupertino, CA
E-mail : <u>rikor@qualcomm.com</u>	Aug 2012
Tel : 1 858 651 7235	

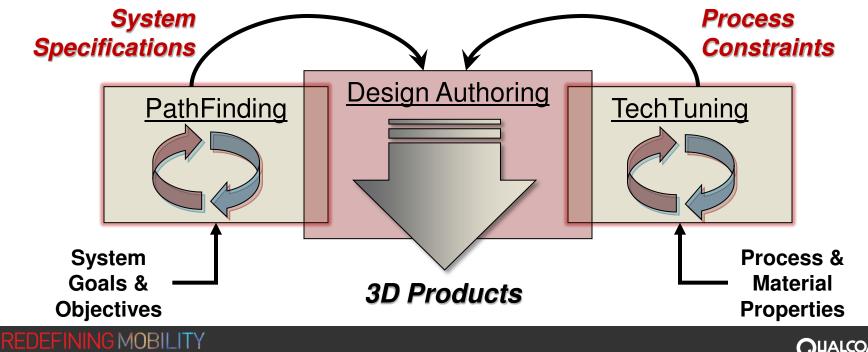

Some of the Typical 3D Options

2.5D	Side by side die stacked on a passive <u>interposer</u> that includes TSVs	
3D Memory	Multiple DRAM die stacked standalone or on an active interposer	
3D Memory on Logic	One or More DRAM die stacked directly on logic die (<u>M-0-L</u>)	
3D Logic on Logic	Multiple logic die stacked on top of each other (<u>L-o-L</u>)	
3D + Interposer	Mix of side by side and stacked schemes with a passive or active interpsr	

Evolving to "Mainstream" 3D Technologies

PAGE 3

Snapshot of Intrinsic Technology Status


	Was (common concern a few years ago)	ls (our take)
Process	High aspect ratio (10:1) 5/50 TSV process	✓
	Thinning & Backside wafer processing	✓
	Microbump and Joining	✓
	Integration & Stacking	\checkmark
	Intrinsic Reliability Assessment	🔹 in flight
	Standards (JEDEC, SEMI, Sematech, 3D EC,)	🔹 in flight
	EDA tools (for "2D-like" Memory-on-Logic design)	
Design	Design Enablement (for "2D-like" Memory-on-Logic design)	\checkmark
Design	Testability (for "2D-like" Memory-on-Logic design)	✓
(M-o-L)	Variability (Corner for "2D-like" Memory-on-Logic design)	\checkmark
	Standards (JEDEC, Si2, IEEE)	🔹 in flight
Product	System Level Value Proposition	\checkmark
	Thermal Modeling & Design for Thermal	🔹 in flight
	Stress Modeling & Design for Stress	✓
	SI modeling & Design for Parametric Yield	✓ in flight
	Cost Structure & Business Models	● [™] TBD
	Yield and Yield Learning	● [™] TBD
	Volume Manufacturing Ramp	●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

REDEFINING MOBILITY

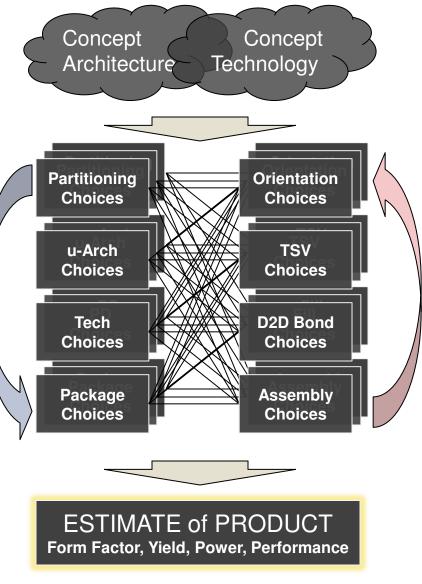
Eco-System for 3D Design

- Segment Design Eco-System into 3 Buckets to Address 3 Key Challenges
- Design Authoring actual chip design
 - Implement Design via (mostly) Traditional 2D Chip Design Flow (RTL2GDS))
 - Output GDS
- PathFinding design/technology concept exploration
 - Manage Choices via Cheap, Quick & Dirty Concept Design
 - Output Clean Specs
- TechTuning physical space exploration
 - *Manage Interactions* via Cheap, Electrical, Thermal & Mechanical Chip Simulation
 - Output Clean Constraints

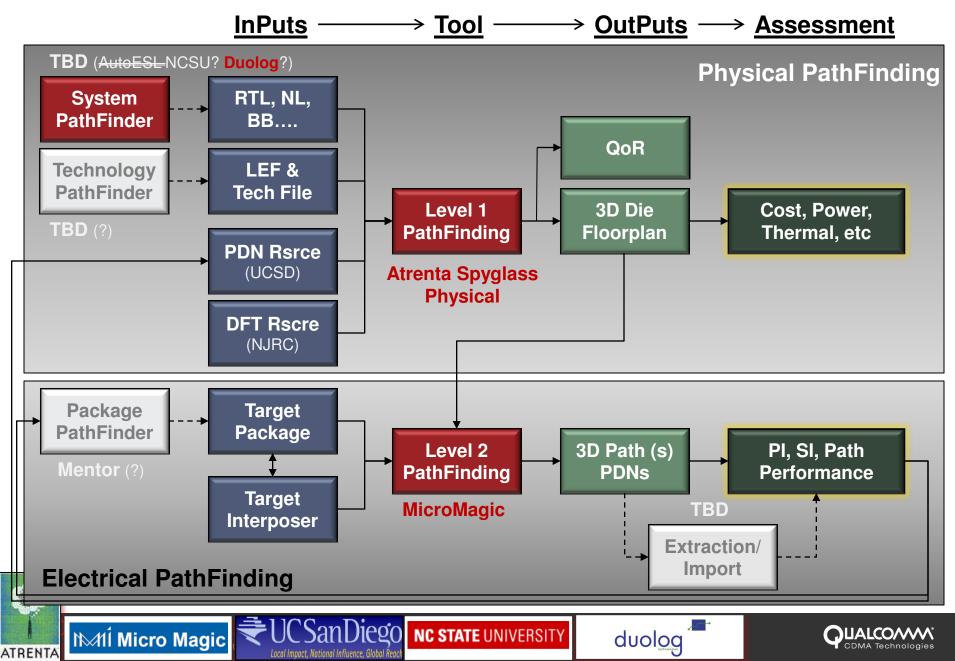
CDMA Technologies

PathFinding: Why & What ?

- Managing Choices
 - Want to optimize product attributes
 - Cost, power, performance, engineering ...
- Need to Co-Optimize Process & Design
 - Winning 3D Product will Be Architected specifically to Leverage 3D Technology
 - Selection of choices is Product Specific
- In General: <u>Need Spatial Awareness</u>
 - Quick and flexible
 - Hi fidelity vis-a-vis accuracy
- For 3D : <u>Also Need Heterogeneity</u>
 - Multiple stacking styles & orientations
 - Multiple tech files
 - Multiple levels of hierarchy
 - Multiple resource constraints
- <u>Structured</u> Methodology.
 - Past experience not applicable
 - Opportunity for paradigm shifts
 - Not tied to Legacy design
 - Process-Design-Package co-optimization


Details :3D System Integration, Springer 2011

imec



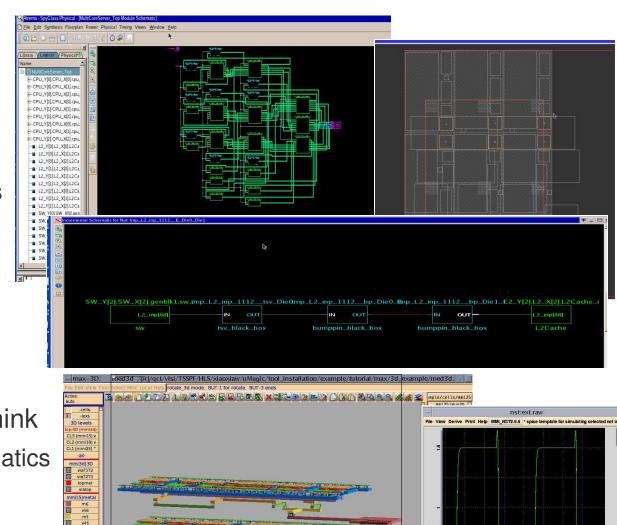
CDMA Technologies

3D PathFinding : Current View

PathFinding

- Level 1 (Atrenta): think
 - RTL & Netlists
 - Block Level Schematics
 - Partitions
 - Block assignments
 - T2T connectivity
 - Global Routing
 - Floorplans
- Level 2 (MicroMagic): think
 - Transistor Level Schematics

m4 v34 m3 v23 m2 v12


ml ct mmi15jactive poly ndif pdif

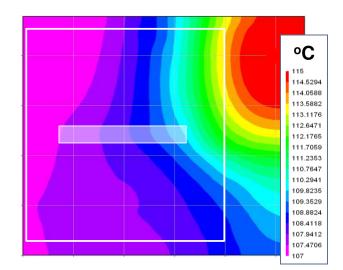
mmi15|othe nw od2 n3v

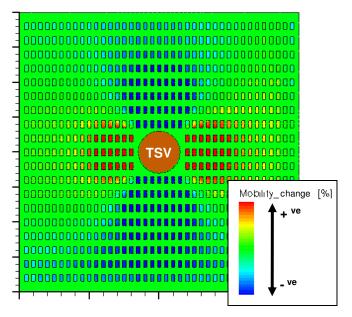
pplus

- T2T layout
- SPICE Netlist
- Waveforms
- Polygons

-18.60pS, 1.22

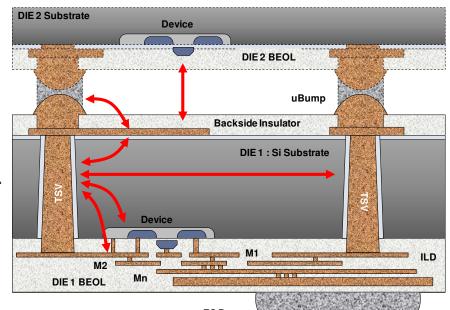
CDMA Technologies


TechTuning: Why & What ?


- Managing Interactions
 - Intimate Proximity and Coupling Between Die
 - In Electrical, Thermal & Mechanical Domains
- Electrical Domain Interactions
 - Within Die Interactions with New Features

 Substrate noise, Coupling etc..
 - Die to Die interactions (SI, PDN, PI...)
- Thermal Domain Interactions
 - Within a Die & Die to Die
 - Need Thermal Rules & Guidelines
 - Design Specific & Technology Specific
 - Need a methodology to plug into std design flow
- Stress Domain Interactions
 - Within a Die & Die to Die
 - Need Stress Rules & Guidelines
 - Design Specific & Technology Specific
 - $-\ensuremath{\,\text{Need}}$ a methodology to plug into std design flow

Details :3D IC Stacking Technology, McGraw Hill 2011



DMA Technologies

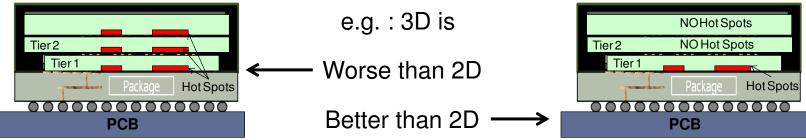
3D Electrical Interactions

- Many Possible Interactions
 - Die to Die close proximity
 - Within a Die new features
- New Geometries: not just simply planar
 - uBump to BRDL
 - TSV to BRDL
 - TSV to TSV
 - TSV to M1

FC Bump

- New Features: not just conductor or insulator
 - MOS nature of TSV & Semiconductor nature of Si
 - e.g. Substrate Noise Coupling: TSV to Device
 - vs. substrate thickness
 - vs. Doping Profile in the Si substrate
 - vs. TSV to Device Separation
 - vs. Substrate Tap & Guard Ring Configuration
 - etc...

cādence


Need true 3D Chip Level Extraction & Coupling Analyses

Or a restricted layout with pre-characterized macro model

Thermal Challenges => a Fundamental Constraint

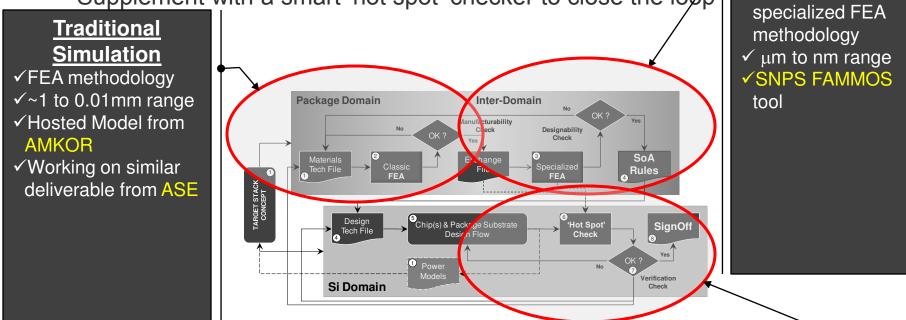
- Thermal: a Global (=System Level) & Local (=Component Level) Challenge
 - Global Concern : must manage skin temperature and overall system power
 - Local Concern : must manage hot spots, junction temperature, and power density
 - Compounding Factor: all advanced systems use some form of Thermal Mitigation
- Thermal is not a 3D-only Challenge
 - A Problem that has to be addressed with 2D Components as well...
 - At Architecture, Design, Floorplanning, Packaging, Application, Software ...
 - Could be a 3D Opportunity ?

Need a System-Chip Co-Design Methodology & Tools

Faster and More Flexible than the traditional CFD / FEA methodologies

DOCEA

- Compatible with cross company handshake (a la TDP practice in PC domain)
- Compatible with fuzzy PathFinding-like forward looking inputs
- Compatible with different system level 'knobs'
- Compatible with different chip level 'knobs'


cādence

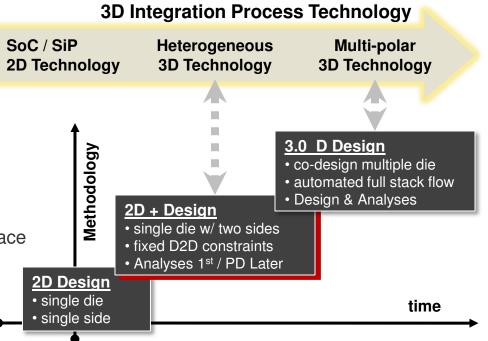
ritable analysis

Implementation of a TechTuning Flow for Stress

- Interface to actual Design Authoring : <u>Rules</u> now
 - maybe in-flow model based simulation later..
 - Based on 'off-line' simulations using specialized tools
 - Define a 'Safe Operating Area' => a set of rules
 - Supplement with a smart 'hot spot' checker to close the loop

"Hot Spot" Checker

- Validation that bits and pieces fit & SIGN OFF the design
- Must interface to design environment : I/P : GDS2 , LEF, DEF \ldots
- May have to be COMPACT MODEL Based (read the whole design and include all effects)
- Working with MENT


Specialized

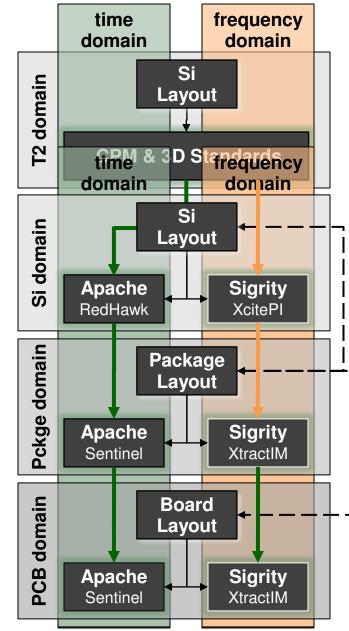
Simulation

✓ Submodeling &

Managing Costs : What Does It Mean for TSS Design?

- Expect Gradual and Graceful Evolution
 - Process and Design together / in synch
 - Significant investment in the existing flow
 - Will be Applications Driven
- Now : Heterogeneous Stacking
 - e.g. Memory (or Std Analog) on logic
 - Design Methodology Requirements
 - Partitioning : by die types w/ spec interface
 - Syntheses e-at-a-time
 - Floorplannin constraint from the other die
 - Physical Design : partial 2-sided die (maybe)
 - Physical Verification: 1-die-at-a-time + interface
 - Analyses : whole stack (eg PDN)
- Next : Integrated Stack Designs
 - e.g. Logic-on-Logic or Interposers
 - Design Methodology Requirements
 - Integrated PD Co-Design w Interposer & Substrate
 - Design Constraint Methodology
 - Design Authoring including the Package
 - Manufacturability (aka TechTuning)

Evolving from 2D Design


3D PDN Design Flow

- 2D Ref Flow
 - Sign off in time domain (Apache)
 - Analyses in frequency domain (Sigrity)
- 3D PDN Flow Approach
 - Take as much as possible from ref flow
 - ✓ Similar approach as Si-Package-PCB Analyses
 - Extract each tier separately
 - Model as an integrated stack
 - Upgraded tools to understand new features
 - TSV, uBump, BRDL, Tier n ...
- Current Status

Apache

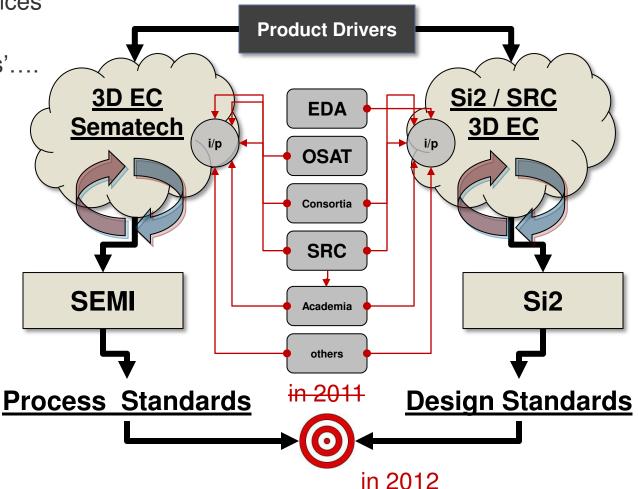
- Demonstrated Tools & Flow
- Supporting development of standard Compact PDN Models and associated 3D Design Exchange Format Standards

SIGRIT

Inventory of Current Core Design Technologies

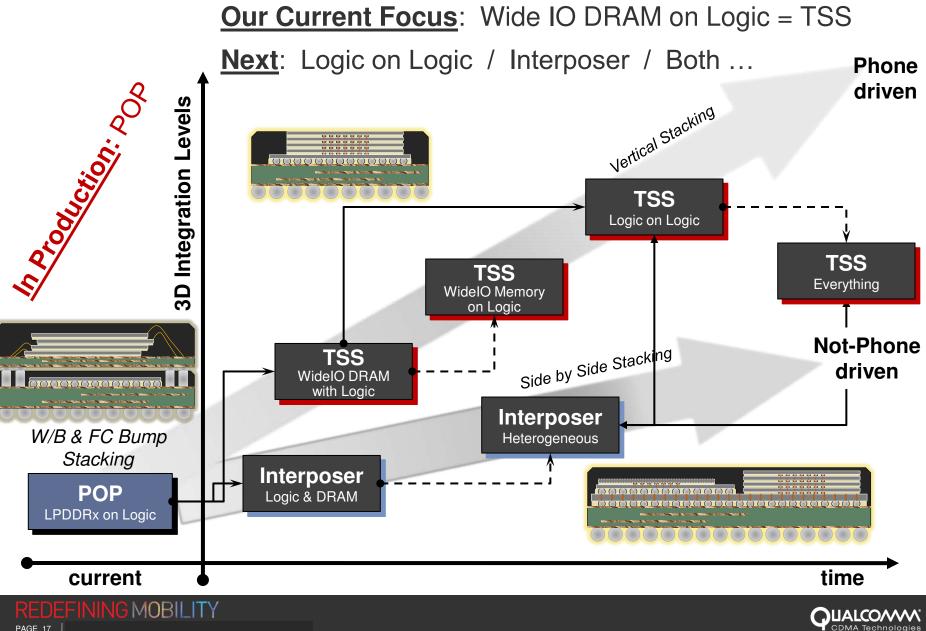
	PathFinding	TechTuning	Design Authoring
Things We Do Have	 ✓ 3D Floorplanner ✓ 3D Net generator ✓ PDN resource estimator 	 ✓ Package Stress simulator ✓ Feature Stress simulator ✓ Reference Thermal sim. 	 ✓ 2D design flow & tools ✓ Timing with a fixed TSV/uBump layout ✓ 3D aware PI / SI analyses
Things We are Working	 Package PathFinder System PathFinder Standard 3D design 	 Chip Level Stress Sim Chip thermal floorplanner Standard 3D design 	 M-o-L product design 3D Variability Flow Standard 3D design
On	exchange formats	exchange format & PDK	exchange formats
Things we do NOT Have (and wish we did)	Technology PathFinder	 3D in flow substrate coupling analyse Fully supported TechTuning "PDK' System component thermal co-design 	 TBD Logic on Logic TBD Interposer TBD 3D Extraction TBD 3D ++ (see below)

■ We don't have Everything – but we do have much more than Nothing ☺ !!

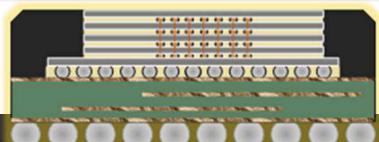

Standards : a Lubricant for the Supply Chain

Leverage Existing Standards Bodies

- Established balloting, adoption and management practices
- But formal and hence need 'mature proposals'....


Process Standards

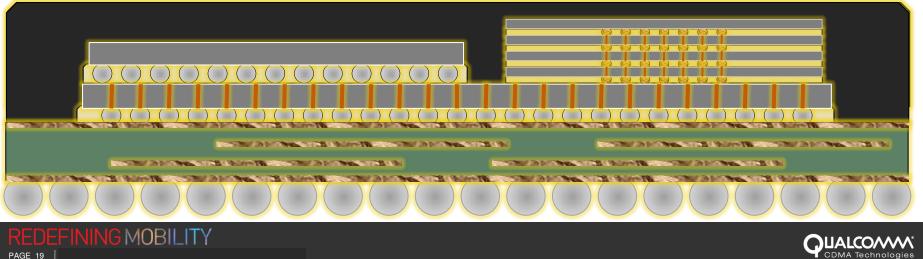
- 3D Enablement Center
- Sematech
- SEMI ...
- Design Standards
 - Si2
 - 3D EC / SRC
 - IEEE
 - JEDEC...
- Encourage Participation by the Industry – esp EDA


2.5D / 3D Stacking Roadmap

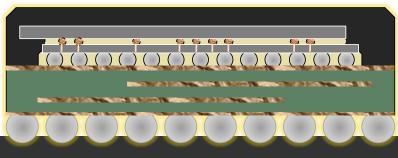
PAGE 17

Design Environment for Memory-on-Logic

Status	Arena	Item
	Design	 ✓ 2D design flow & tools + quasi-manual placement of T2T / TSV array + custom T2T buffer design & incremental rules to manage interactions
Have	Timing	 ✓ 2.5D analyses flow & tools + compound 'lumped' TSV delay model
	PI	 ✓ 2D analyses flow and tools + extended hierarchy + recognition of new features
	SI & Variability	✓ 'Off Line' analyses to produce set of 'keep out' rules
In Flight	'In Line' Rule Checkers	 ✓ Chip Level Stress Simulator – for 'stress Hot Spots' ✓ Chip Level Thermal Floorplanner ✓ Chip Level SI Simulator
	Integration w/ Commercial Die	✓3D Design Exchange Formats
e to	SI Analyses	In Flow SI analyses – on line and in product flow
Like to Have	TechTuning & PathFinding	 Fully supported TechTuning "PDK' System-Component thermal co-design



REDEFINING MOBILITY


Design Environment for Interposers

Status	Arena	Item
Have	Design	 ✓ 2D Layout tools ✓ 2D Extraction Tools
e ve	Extraction	The straction inc. TSV , routing and FRDL/BRDL
Need to Have	Signal Integrity	Integrated SI tools inc floating substrate and 3D features
eed t	Power Integrity	Integrated PI analyses tools & flow
Ž	DFT / Test	Integrated Double Sided Passive Floating Substrate
	PathFinding	Architectural Trade Off Analyses for Value Proposition

Design Environment for Logic on Logic

Status	Arena	Item
Have	Design	✓ 2D Flow for One Single Sided Die & Technology at a time
На	PathFinding	✓ 3D Physical PathFinding Flow for finding Value Proposition
	Floorplan	3D with optimization across multiple tiers (technologies)
	Utility Insertion	● 3D tools for global utilities – eg NoC, Clock, DFT
	Extraction	● 3D Extraction inc. TSV , routing and FRDL/BRDL
ave	Timing	across multiple tiers, technologies, libraries
Must Have	Power Integrity	Integrated PI analyses tools & flow
Mus	Signal Integrity	in flow SI analyses tools inc 3D features
	DFT / Test	Optimized DFT overhead for pre-stack test
	Verification	● 3D Physical Verification, LVS, etc across multiple tiers
	etc	dependent on the actual stack partition

REDEFINING MOBILITY

qctconnect.com

UALCOMM

CDMA Technologies

QUALCOMM CONFIDENTIAL AND PROPRIETARY

REDEFINING MOBILITY QUALOW

