

## Hot Chips: Stacking Tutorial

Choon Lee Technology HQ, Amkor





Enabling a Microelectronic World<sup>®</sup>



Smkor"

## **Mobile Phone Technology Change**



#### **Feature Phone**

#### **Smartphone**

#### theguardian

News Sport Comment Culture Business Money Life & style Travel Envir

News > Technology > Smartphones

#### Smartphones take lead in European mobile phone market

📑 추천 🛛 64

🍤 Tweet < 218

🧒 reddit this

Comments (

Simple 'feature phones' now make up less than 50% of sales as quarterly smartphone shipments exceed those of more basic devices for the first time

Source : The Guardian, 2011

#### Smartphones as a Percentage of All Phones



Source : in-stat, 2011



## **PC Technology Change**

Reliability Frust





## Memory Technology Change





## **AP+Memory Stack Technology Movement**





## **3D Packaging Paradigm Shift**





Package-on-Package



| 0000 | 0000 |
|------|------|

#### Package-in-Package





#### Flip chip + Wire bonding



<u>Wire bonding</u> + Wire bonding





<u>TSV</u>







#### Flip Chip / Wire bonding stack

#### ... Evolves into 3D TSV





## High End fcBGA

#### ...Evolves into 2.5D TSV





#### **3D TSV Key Process**





## **Chip on Interposer First Process**

Reliability Frust



Amkor Proprietary Business Information



## **Chip on Interposer First Process**

Reliability Frust





## Chip on Interposer First Process – High Level Risk 🥑

#### 1 Front Micro Bump Pad

- Ni/Au Pad : Shape, Thickness, IMC embrittlement

# 2 Chip Attach & CUF : Chip Attach alignment, Flux cleaning, Underfill dispensing

**3** Wafer Mold : Warpage, Void

#### **4** Flat Reveal Wafer Thinning + CMP

- Wafer Cracking, Cu smearing, Cleaning
- 5 Silicon Recess Dry Etch (CF4)
  - Cu corrosion, Etch rate variance, Slow Etch, Contaminate

#### 6 Passivation – organic pass. coating, PECVD

- Wafer Cracking, Edge Arcing, Thickness/Stress control
- **7** Secondary Reveal –CMP : Wafer Cracking
- 8 C4 Bumping

Reliability Frust

- 9 Mold Thinning (optional)
- 10 Dicing Saw street cracking



#### **Chip on Interposer Last Process**





## Chip on Interposer Last Process – High Level Risk



#### 1 Front Micro Bump Pad

- Ni/Au Pad : Shape, Thickness, IMC embrittlement

#### 2 Zone Bond : TTV Control

#### **3** Flat Reveal Wafer Thinning + CMP

- Wafer Cracking, Cu smearing, Cleaning

#### 4 Silicon Recess – Dry Etch (CF4)

- Cu corrosion, Etch rate variance, Slow Etch, Contaminate

#### **5** Passivation – Organic pass. coating, PECVD

- Wafer Cracking, Edge Arcing, Thickness/Stress control

#### **6** Secondary Reveal

- Wafer Cracking

#### C4 Bumping

**8** 2<sup>nd</sup> Carrier Bonding & 1<sup>st</sup> Carrier De-bondding

#### Ohip Attach on Interposer

#### 10 2<sup>nd</sup> Carrier de-bonding Reliability Trust **16**

#### **FS NiAu – CoC Evaluation**



#### CoC Evaluation on E-lytic Ni/Au

- AOI inspection
- Ni/Au thickness measurements
- Auger analysis for surface condition
- Wafer bonding
- Simulated backside thermal processes
- Debond
- AOI Pad inspection for FM
- Singulate
- Mass Reflow
- TC Bond
- "FA X-section, EDX line scan, EDX area mapping"
- TC CoC
- FA

#### **FS NiAu Plating Evaluation**



#### • Images - Post UBM Etch Process

- There are no abnormalities



#### Edge trim & WSS



#### Process validation

- For edge trimming to reduce chipping.
- Optimization of wafer bonding to minimize thickness variance of temporary bonding adhesive.
- Minimizing wafer crack on debonding process.
- EAR(Etchng Adhesive Removal) optimization



## **Overview of ZoneBOND carrier wafer**





Silane+FC40 (Z1, release zone)

- This is anti-sticky zone.

#### Edge zone (Z2, stiction zone)

- Edge zone width is approximately 2.5mm.
- Minimum edge zone width is 1.5 mm.
- SU8 is used as the edge zone mask.

#### **Zone treated Carrier Preparation (3)**



• Drop test to Acetone





- We can confirm that Zone treated carrier wafer(Z1) to acetone.
- Z1 is non stick. The reaction of the material to the wafer is just to make the material chemically bond to the wafer that as a "Silanol condensation reaction". Once it reacts with the surface, the single molecule layer that's permanently attached to the carrier acts as a poly tetrafluoroethylene(PTFE) or "Teflon like" coating on the wafer.



#### **ZoneBOND De-bonding**



Edge Zone Release with EZR & EZD module

**EZR Module** te for the first of a factor of a first of a **EZD Module** 



EZR Module: 300mm wafer mounted on film frame





#### Failures & Problems Related with ZoneBOND De-Bonding





→Delamination

 $\rightarrow$ Adhesive squeeze out

→Blisters



 $\rightarrow$ Crack at edge zone

→Crack

→Wafer shift





## **World Wide Temporary Bonding Methods**



|                  | Thermal                    | Zone                    | Laser               | Chemical | Wedge     |
|------------------|----------------------------|-------------------------|---------------------|----------|-----------|
| Machine          | EVG, TEL, SUSS             | EVG, SUSS               | TAZMO, Yushin, SUSS | ток      | SUSS      |
| Material         | BSI, ShinEtsu,<br>Sumitomo | BSI, ShinEtsu, Sumitomo | 3M                  | ток      | TMAT, Dow |
| Machine<br>price | Middle                     | High                    | Middle              | Middle   | High      |
| Material price   | High                       | High                    | Middle              | High     | Middle    |
| ττν              | Good                       | Normal                  | Good                | Normal   | Normal    |
| UPH              | Middle                     | Low                     | High                | Low      | High      |

The miracles of science HD-3007





brewer ZoneBOND™





#### **Advantage & Disadvantage of Various Methods**



| POR NEW             |                  |                                                                                                                    | NEW                                                                                                                        |                                                                                                                          |                                                                                                                           |                                                                                                                             |
|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| System              |                  | Thermal                                                                                                            | Zone                                                                                                                       | Laser                                                                                                                    | Chemical                                                                                                                  | Wedge                                                                                                                       |
| Bond <sup>–</sup>   | Advantage        | - Using the Si carrier                                                                                             | - Using the Si carrier                                                                                                     | <ul> <li>Using the UV cure</li> <li>Low out gassing</li> <li>Double side bond</li> </ul>                                 | <ul> <li>1 layer adhesive<br/>coat</li> <li>Short bonding time</li> <li>Good to adhesive<br/>generality</li> </ul>        | <ul> <li>Using the Si<br/>carrier</li> <li>Development of<br/>an active<br/>adhesive</li> </ul>                             |
|                     | Dis<br>advantage | - Long Bonding time                                                                                                | <ul> <li>Application of Zone<br/>carrier</li> <li>Bad to adhesive<br/>stability</li> <li>High machine price</li> </ul>     | <ul> <li>Using the Glass carrier</li> <li>Bad to adhesive generality</li> </ul>                                          | <ul> <li>Using the hole Glass<br/>carrier</li> <li>Coating the top<br/>device</li> <li>High carrier price</li> </ul>      | <ul> <li>2 layer coat</li> <li>Difficult to control<br/>adhesion</li> <li>High machine<br/>price</li> </ul>                 |
| Bump<br>process     | Advantage        | - Applicable issue to the Si carrier                                                                               | - Applicable issue to the Si carrier                                                                                       | - High stability<br>(thermal, chemical)                                                                                  | <ul> <li>Advantage of out gassing</li> <li>High chemical stability</li> </ul>                                             | - Applicable issue to the Si carrier                                                                                        |
|                     | Dis<br>advantage | <ul> <li>Bad thermal stability</li> <li>High adhesive contamination</li> </ul>                                     | <ul> <li>Bad thermal<br/>stability</li> <li>Change the<br/>adhesive</li> <li>Weak to void</li> </ul>                       | <ul> <li>Glass chucking</li> <li>Weak to void</li> </ul>                                                                 | <ul> <li>Glass chucking</li> <li>Bad thermal stability</li> <li>Process failure by<br/>high warp</li> </ul>               | <ul> <li>Low adhesion</li> <li>Concern to Si del.</li> <li>Weak to void</li> <li>High adhesion<br/>contamination</li> </ul> |
| Debond <sup>–</sup> | Advantage        | - No mount tape<br>damage                                                                                          | <ul> <li>Room temperature<br/>debond</li> <li>High thermal<br/>stability</li> </ul>                                        | <ul> <li>Room temperature<br/>debond</li> </ul>                                                                          | - High thermal stability                                                                                                  | <ul> <li>Room temperature<br/>debond</li> <li>Carrier remove to<br/>short time</li> <li>High thermal stability</li> </ul>   |
|                     | Dis<br>advantage | <ul> <li>Need to high<br/>temperature<br/>process</li> <li>Bump damage</li> <li>Thin wafer<br/>handling</li> </ul> | <ul> <li>Long remove time<br/>to edge adhesion</li> <li>Worry about new<br/>process</li> <li>High machine price</li> </ul> | <ul> <li>Possibility to laser<br/>damage</li> <li>Difficult to rework</li> <li>Adhesion change<br/>at surface</li> </ul> | <ul> <li>Long time of<br/>adhesion removal</li> <li>After removing the<br/>adhesion, possibility<br/>of damage</li> </ul> | <ul> <li>Wafer edge<br/>damage</li> <li>High machine<br/>price</li> </ul>                                                   |



#### **WBG and Cleaning**



#### Process validation

- Soft reveal
  - Minimizing TTV with accurate control.
  - Cleaning improvement after wet polish.
- Flat process
  - Only grinding of Si layer at WBG tool not to expose Cu.
  - Using CMP tool to expose Cu and post CMP cleaning



#### Wafer Thinning & Cleaning Example of Flat process









Reliability Frust

<Device> Mean : 50.1 um Max : 52.7 um Min : 46.8 um TTV : 5.9 um

#### **Dry Etch**



#### Process validation

- Soft reveal
  - Acceptable etch rate
  - Optimizing etch rate and uniformity with TSV bonded pairs.
  - Finding via height for ISR process sequence.
- Flat process
  - Very slow etch rate
  - Optimizing etch rate and uniformity with TSV bonded pairs
  - Etch gas mixing evaluation to improve etch rate without Cu corrosion.



#### Si recess etching : Dry etch





#### Si recess etching : Dry etch



#### Flat process



#### Soft reveal process





#### PECVD



#### Process validation

- Deposition of SiN and SiO2
- Confirming deposition rate, uniformity, stress and RI.
- Setting up measurement method using elipsometer to check single layer, multi layer.





- Silicon Nitride
  - SiH<sub>4</sub>(g) + NH<sub>3</sub>(g) + N<sub>2</sub>(g) → Si<sub>x</sub>N<sub>y</sub>H<sub>z</sub>(s) + H<sub>2</sub>(g)
- Silicon Oxide [Silane-based process]
  - SiH<sub>4</sub>(g) + 4N<sub>2</sub>O(g) + N<sub>2</sub> (g) → SiO<sub>2</sub>(s) + 4N<sub>2</sub>(g) + H<sub>2</sub> (g)+ O<sub>2</sub>(g)
- Silicon Oxide [TEOS-based process]
  - Si(OC<sub>2</sub>H<sub>5</sub>)<sub>4</sub>(g) + O<sub>2</sub>(g)  $\rightarrow$  SiO<sub>2</sub>(s) + byproducts







Reliability Frust 18

Amkor Proprietary Business Information

Aug-12, Choon





#### Note

• Found no damage.







Note

• Found no damage.







#### Note

• Found no damage.



#### CMP



#### Process validation

- Process optimization to find BKM
  - Oxide/Cu polish process for ISR (Inorganic soft reveal)
  - Si/Cu polish process for flat reveal process
  - Slurry evaluation
  - Post CMP cleaning evaluation





Proven product and industry benchmark CMP tool >1500 Reflexion/Refelxion LK shipped by 2011



- 3 platen 4 head polisher
- Multi zone polishing head
- In-situ process control optimizes productivity and performance
- High performance Desica Cleaner

#### Process Controls

- Real-Time Profile Control (RTPC<sup>™</sup>)
  - High-resolution eddy-current endpoint for bulk metal polish step
- FullScan™ Endpoint
  - Laser endpoint for metal film clearing
- FullVision<sup>™</sup> MX Endpoint
  - Broad-band optical endpoint control for remaining dielectric thickness
- Si EP/ISPC under development

- Process BKMs
  - TSV CMP know-how
  - Low cost/high performance process BKMs for various TSV CMP applications





Reliability Frust





 1k nitride and 2.8um oxide were deposited on these wafers, pillar height at wafer center and edge post etch are not high enough for CMP to fully exposed copper after pillar planarization and OP with 5k oxide removal on the field.





Pre-CMP (tilted)





Post 30s Polish Time (tilted) Post 90s Polish Time (top-down)

Fast and good pillar planarization achieved

Reliability Minimum field oxide losseduring pillar planaraization



center



middle



edge











Reliability Frust 1

#### Secondary reveal : CMP Layer Thickness confirmation after CMP



Patterned Area Next to Via

**Open Field Area** 





#### Process validation

- Performing SD with wafer frame handling.
- Evaluation of laser transparent tape.
- Parameter DOE of laser process
- Study for auto focus through inorganic passivation





#### Wafer surface flatness comparison

 $\checkmark \mathrm{Observed}$  wafer BG tape laminated by manual process



Result

Wafer flatness was much improved after optimize tape laminate condition. With improved condition, can expect stable Auto Focus result = stable cutting quality.



#### Investigation for too low SFV on SiN layered wafer





#### Result

SFV was very low at all the point on wafer.

It was around "0.1V" at the lowest case.

\*SFV is same as quantity of reflected AF laser from wafer surface. \*Enough high SFV (=enough reflectivity) is required to keep good Z-accuracy



## Influence of SiN layer on wafer surface ✓ Simulation result f reflectivity and suspected root cause of too low SFV







3D through silicon via (TSV) chips will represent 9% of the total semiconductors value in 2017, hitting almost **\$40B**. Packaging, assembly and test market will reach to **\$8B**, the middle-end wafer processing activity such as TSV etching filling, wiring, bumping, wafer testing and wafer-level assembly will reach to **\$3.8B**. Source : Yole Développement, Jul. 2012



## **3D\_TSV Commercialization Status**



Key to 3D commercialization is a cost/performance ratio!

| Application                    | Driver                                                                           | Status                 | Barrier                                                                           |
|--------------------------------|----------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------|
| Image sensors                  | Performance,<br>Form factor                                                      | Production             | None                                                                              |
| CPUs + memory                  | Performance                                                                      | 28nm Si node or beyond | Cost, process, yield, infrastructure                                              |
| GPUs + memory                  | Performance                                                                      | 2014                   | Cost, process, yield, infrastructure                                              |
| FPGAs                          | Performance                                                                      | Production             | process, yield,<br>infrastructure                                                 |
| Wide I/O memory with processor | Performance (bandwidth<br>extension, lower power<br>consumption),<br>Form factor | 2013                   | Cost, process, yield,<br>KGD, infrastructure<br>(including business<br>logistics) |
| Memory (stacked)               | Performance,<br>Form factor (z-height)                                           | 2013                   | Cost, process, yield, assembly                                                    |



## Package Stack with TMV<sup>™</sup> Technology





#### Via Formed by laser machining



#### Package Stack with WLFO Technology



















# Thank you

