

Sensor Fusion Mobile Platform Challenges and Future Directions Jim Steele VP of Engineering, Sensor Platforms, Inc.

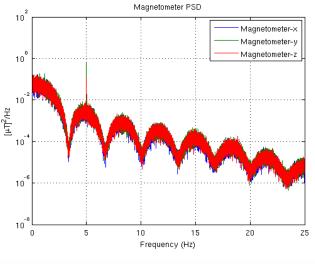
© Copyright Khronos Group 2012 | Page 104

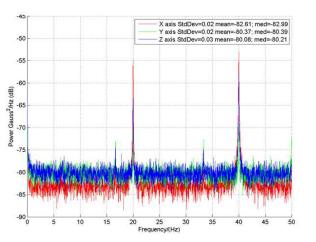
How Many Sensors are in a Smartphone?

- Light
- Proximity
- 2 cameras
- 3 microphones (ultrasound)
- Touch
- Position
 - GPS
 - WiFi (fingerprint)
 - Cellular (tri-lateration)
 - NFC, Bluetooth (beacons)
- Accelerometer
- Magnetometer
- Gyroscope
- Pressure
- Temperature
- Humidity

Mobile Sensor Challenges

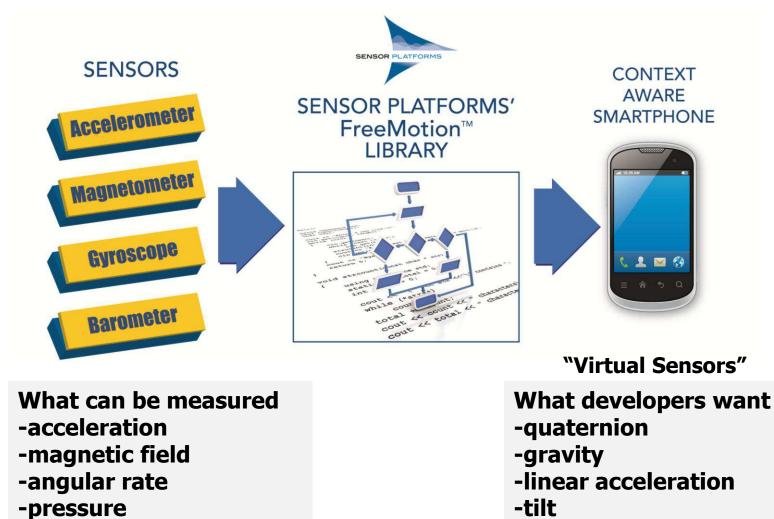
~90° compass error in the first Ice Cream Sandwich smartphone


- Underlying problems:
- Some sensor components lack repeatability
- RF and other PCB noise interaction with mag sensor
- Non-standard availability (no gyro, pressure, 2nd camera, ...)
- Non-standard capability (resolution, update rate, ...)
- Not fully specified (non-uniform gain, skew)



User Experience Across Platforms

- Heavy engineering burden to maintain consistency across system variations
 - Hard and soft iron contents
 - Component selection for optimal price/performance
 - Different application processors (sensor hubs)
 - Different mobile OS


Validation efforts diffused over multiple platforms

Sensor Fusion Algorithms Solve Challenges

Examples of Sensor Fusion

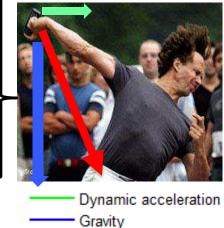
10-axis sensor fusion and background calibration

- Industry standard foundation for sensors
- No user-intervention to keep sensors calibrated
- Adjusts to changes in environment

Sensor data can be interpreted using algorithms

- Magnetometer \rightarrow Compass (avoid magnetic anomalies)
- Pressure \rightarrow Altitude (avoid pressure anomalies)
- Throttle the gyroscope (keep highest power sensor off until needed)

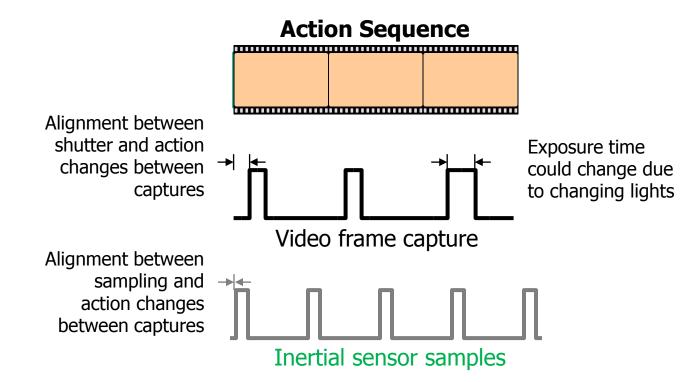
Combine multiple sensors to improve sensing


- Pressure + GPS = faster GPS fix
- Camera + Sensor Fusion = Augmented Reality
- inElevator sensor?

Comparison of Mobile OS Sensor Support

Sensor	iOS 5	Android	Win8
Accel/Mag/Gyro	\checkmark	\checkmark	\checkmark
Pressure/Humidity	x	\checkmark	x
Quaternion	CMAttitude	ROTATION_VECTOR	Orientation
Euler Angles	CMAttitude	ORIENTATION (depr.)	Inclinometer
Dynamic Acceleration	userAcceleration	LINEAR_ACCELERATION	Shake
Gravity in body frame	gravity	GRAVITY	Tilt
Tilt-compensated Compass	X	X	Compass
In Elevator	x	x	Х

Virtual Sensors, e.g.



Measured acceleration

Need Unified Timestamp between Sensors

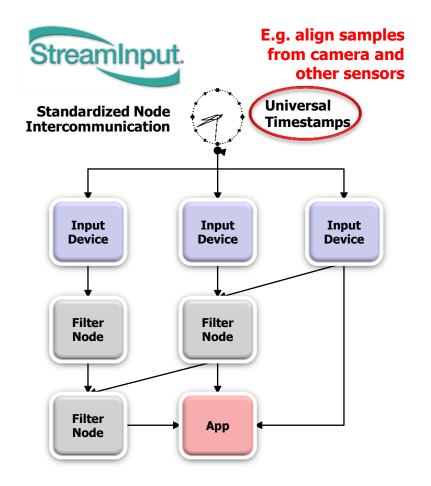
- Sensors work on different time bases that drift
- Not all sensors support the same sampling rate

StreamInput Concepts

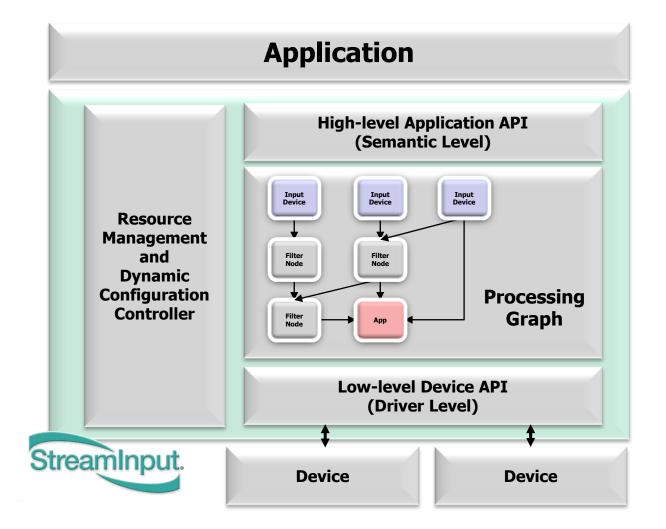
Standardized Application-defined filtering and conversion

- Can create virtual input devices

• Sensor Hardware Vendor Agility for OEMs


- Allows standardized interface for hardware accelerated features

Extensibility to any sensor type


- Can define new node data types, state and methods

Sensor Synchronization

- Universal time stamp on every sample

StreamInput Architecture

- 1. Setup Processing Graph (or use pre-supplied graph), request and receive semantic sensor stream through Highlevel API
- 2. Optionally, dynamically configure sensor processing through Lowlevel API – can tune power vs. performance

Implementable over existing OS input APIs to simplify adoption

S O N S O N

2

Т

Sensor Platforms

• We create algorithms for sensors

- More information at our blog: <u>www.sensorplatforms.com</u>
- jsteele@sensorplatforms.com

