
Efficient, Precise-Restartable Program Execution on Future Multicores

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi
Department of Computer Sciences, University of Wisconsin-Madison

{gagang, sridhara, sohi}@cs.wisc.edu

1. INTRODUCTION
Multicore processors are becoming ubiquitous, placing new
demands on hardware and software designers. No longer do
a small set of experts develop a few software applications
for a small number of parallel machines. Already standard
in servers, desktops and laptops, today handheld devices
use multicores, expanding the spectrum of their use from
mobile computing at the low end to cloud computing at the
high end. Consequently, dramatically increased number of
software developers are creating hundreds of thousands of
applications to run on a plethora of diverse platforms. Thus
ease of writing parallel programs, to achieve energy and/or
performance efficiency, continues to gain importance.

At the same time, programmers have to account for the
changing characteristics of emerging technologies. Proces-
sors are transitioning from homogeneous cores to hetero-
geneous cores with disparate performance/energy character-
istics. As future computing hardware pushes the limits of
semiconductor technology, it will become increasingly unre-
liable. Simultaneously, emerging use of computing systems
will require them to host multiple applications concurrently,
even on mobile devices. Unreliability, resource (computing
and energy) management, and service-level agreements will
lead to imprecise knowledge of available resources during a
program’s execution. Hence programmers can no longer as-
sume availability of given (or constant) resources to process
an application, unlike in canonical parallel programming.

The confluence of the above factors pose daunting chal-
lenges to programmers in writing ubiquitous programs and
achieving their reliable, energy-efficient, parallel execution,
while remaining agnostic of the unpredictable, dynamically
(and potentially continuously) changing computing condi-
tions.

We propose a model that seamlessly addresses this range
of challenges. It relies on expressing parallel algorithms
as sequential programs, i.e.,statically-sequential (§2.1),
and performing their controlled, dynamic parallel execution
while honoring their sequential semantics. Although at first
glance the approach may appear antithetical to parallelism,
we show that it affords several advantages. Its intuitive inter-
face and sequentially determinate execution (which ensures
that in any execution of a program with the same inputs,
a variable is assigned the same sequence of values) allow
programmers to easily reason about the program execution,
simplifying programming. The model utilizes the implied

order in a statically-sequential program to achieve a dataflow
schedule of parallel execution (§2.2), potentially exploiting
all available parallelism. Further, the order permits the adapt-
ability needed to achieve efficient execution in dynamically
changing (§2.3), unreliable (§2.4) computing environments.
We provide an overview of these aspects and present results
from our efforts to develop several benchmark applications
using the model, implemented as a fully functional runtime
system, on stock multicore systems.

2. DYNAMIC PARALLELIZATION OF
SEQUENTIAL PROGRAMS

Our approach strives to minimize the burden on program-
mers. It allows programs to be authored in established im-
perative programming languages, such as C++, and auto-
mates their parallel execution. The model extracts a pro-
gram’s computations, establishes the dynamic data-flow be-
tween them, and schedules their ordered execution as the
prevailing resources permit. It can also roll back the exe-
cution, up to a desired point, and resume it, if desired. We
highight the model’s principles by describing the program-
ming interface and the mechanisms as implemented in the
runtime (a C++ library).

2.1 Composing Programs

Programmers today follow modern software engineering and
object-oriented (OO) design principles by composing pro-
grams from reusable functions that manipulate encapsulated
data and communicate with each other using well-defined in-
terfaces. Often such “well-composed” functions avoid side-
effects by only manipulating data communicated through the
interfaces. We seek to exploit the properties of such OO pro-
grams and the natural insights programmers have in their al-
gorithms.

Programs written using the runtime library closely resem-
ble their sequential versions intended to run on a unipro-
cessor, but for few user-annotations. Users compose pro-
grams from computations and data structures amenable to
concurrent execution, as they would conventional parallel
programs. In addition, they annotate the code to identifypo-
tentially concurrent functions and the data potentially shared
between them. They further formulate the shared data read
and written (in the form of objects) by the functions, avail-
able from the function’s interface, into read and write sets,
respectively. Beyond these annotations the onus is not on
the user to schedule execution of the computations or to en-



sure independence of concurrent computations, in contrast
to conventional parallel programmming.

2.2 Executing Programs

To execute a program on processing cores the runtime raises
the granularity of computations to functions. It sequences
through the program sequentially but seeks to execute the
functions concurrently. Before executing a function the run-
time establishes its dependence on already executing func-
tions using the objects in the function’s read and write sets.
Since objects in the read and write sets may be unknown stat-
ically, their identity is established dynamically, at run-time,
by dereferencing pointers. The runtime employs dataflow
execution since it naturally exposes the innate parallelism
between computations. Functions found to be independent
are submitted for execution while those that are dependent
are “shelved” until their dependences have resolved. The
runtime continues to seek work beyond stalled computa-
tions, resources permitting, and thus dynamically exploits
any available parallelism. Moreover, it ensures that the ex-
ecution proceeds as per the implied semantics that program-
mers have come to expect from sequential programs.

The runtime also provisions to handle functions (identi-
fied by the user) which do not follow OO principles (e.g.,
with unknown side effects) by executing them sequentially.

Statically-sequential applications (blackscholes, barneshut,
bzip2, dedup, histogram, and reverse index) from standard
benchmark suites, developed using the runtime on three
stock multicore systems, an 8-thread Intel Nehalem-based
machine, a 16-core and a 32-core AMD Opteron-based ma-
chines, achieved speedups (harmonic mean) similar to their
Pthread versions on the Nehalem machine and over 20%
better on the AMD Opteron machines [1].

2.3 Time- and Energy-Efficient Execution

Utilizing resources efficiently in dynamically changing en-
vironments will be a key challenge going forward. Doing
so will require exposing application parallelism that best
fits the capabilities of resources in the execution environ-
ment. While exposing too little parallelism can underuti-
lize the resources, exposing excessive parallelism can lead
to contention for resources, potentially degrading its time-
and energy-efficiency. Dynamically matching the exposed
parallelism with the changing capabilities of the execution
environment requires the ability to suspend already execut-
ing computations, reintroduce them later, and introduce new
computations into the environment, as appropriate. The run-
time exploits the implied ordering in statically-sequential
programs to choose computations judiciously when regulat-
ing the parallelism, while ensuring forward progress. It uses
a Goodness of Parallelism (GoP) metric, computed periodi-
cally as the execution unfolds, to correlate the instantaneous
efficiency of the program to the instantaneous degree of par-
allelism. A drop in efficiency causes it to throttle the par-
allelism to ease contention, while an improvement in effi-

ciency causes it to increase the parallelism to exploit avail-
able resources.

Experimental results on a stock 4-core (8-thread) Intel
Core i7 2600 (Sandy Bridge) workstation show that our
approach achieves up to 50% higher time- and energy-
efficiency over the state-of-the-art parallel execution systems
across a variety of dynamic operating conditions.

2.4 Precise-Restartable Execution

Future computer systems will present unreliable resources to
applications due to exception events, e.g., hardware faults,
timing errors caused by aggressive energy management, or
due to resource management. To be efficient it will still
be desirable to continue executing the interrupted program,
possibly at a different time and/or on another system, with-
out discarding all of the completed work. Hence to resume
execution in such scenarios the runtime supportsprecise-
restartability of parallel programs, analogous to precise-
interruptible execution of sequential programs.

The runtime exploits the implied ordering to precisely
identify the excepted computation in the statically-sequential
program and restores the program state to reflect the sequen-
tial execution of the program up to the computation. To do
so it tracks the invocation and completion of computation in
the implied program order. Further, it checkpoints the state
a computation may modify, i.e., itsmod set (a user-provided
set similar to the computation’s write set and processed sim-
ilarly) before its execution. Once the excepting condition
is mitigated the program may resume from the excepting
computation. The runtime also incrementally checkpoints
the program state after each computation successfully com-
pletes, using its mod set. This state can be used to spatially
or temporally migrate a halted program.

Experiments on a stock 12-core (24-thread) Intel Xeon
E5-2420 (Sandy Bridge) workstation show that the run-
time can tolerate signficantly higher (proportional to thread-
count) exceptions than the conventional approaches. De-
pending on the application, the support to tolerate aggressive
exception rates (e.g., up to 2 every second) incurs perfor-
mance overheads ranging from 0% to 135% (at 0 faults).

3. CONCLUSION
Parallel programming for multicore-based systems and their
dynamically changing operating environments pose signif-
icant challenges to everyday programmers in the effort to
improve productivity and to achieve error-free, efficient
execution of their programs. We presented a model that
meets these challenges better than other approaches by using
statically-sequential programs and performing their dynam-
ically controlled dataflow execution.

References
[1] G. Gupta and G. S. Sohi. Dataflow execution of sequential

imperative programs on multicore architectures. InMICRO-44,
December 2011.



Challenges in Future Computing Systems Parallelizing the Execution

F1

F1, F6

F1, F6, F2

F1

F2

F6F5F4F3F2F1

Epoch             Reorder List Entries            Completed        Retired

t1

F6F5F4F3F2t2

F6F5F4F3F2t3

F6F5F4F3t4

Precise�Restartable Execution

• ��������������	
��
�
��

− Simplify programming of dynamic and static 

heterogeneous multicores

− Enable portable, platform�agnostic programming 

• ���
�
����

− Optimize energy� and performance�efficiency

− Adapt to dynamically and continuously changing 

operating conditions

• ���
��
�
��

− Tolerate increasingly unreliable resources

− Provide differentiated levels of service

���
�
���������
�������������� ������������
�
�������
�
����
��
�����

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi

������������
�
�������
�
����
��
�����

�����
���������������	��	������������
�
������

����
���������
���
�����������

• ���������
���
�
�	�����������
�	����	����

��������
��

•  
���������������������
�
���	����
����	�

����
�
�
�����
�
!��
��������������� ��	�

����������������
�
����

• "���������#
�#���
�����������	�������������
�����

�����������#��	�
• $�����%&'�������
��� ��	�����������
�
�����#�������������#��

�����������������
�
����������

Applications:
Histogram
Stream
Reverse Index
Hash Join
Barneshut
RE

Proposed Model: Sequential Programs, 
Dynamic Parallelization

• (���
���������
���
�� programs (using parallel 

algorithms)

• �����
��	��������parallel execution

− Preserving sequential semantics

• �����
���������������	�parallelism

• Implemented with a software runtime library (C++ )

− Seamlessly addresses Productivity, Parallel 

Execution,  Efficiency, and Reliability

Programming

• Leverage modern )�*����)�
����	 principles 

− Modularity, encapsulation

• Exploit 
����+�
��
�#���in their algorithms

− Users identify ����������	 parallel functions, data 

����������	 shared between them, and their read and 

write sets

• Users do not ensure independence between 

computations, nor orchestrate parallel execution

• Independent functions execute concurrently, 

dependent functions are serialized (in program order)

• Dependences are tracked as functions execute and 

complete

wrSet rdSet

F1: {B, C}  {A}

F2: {D}      {A}

F3: {A, E}  {F}

F4: {B}      {D}

F5: {B}      {D}

F6: {G}      {H}

Efficient Execution

• “,��	����������������
��” metric to assess 

instantaneous efficiency

− Measured periodically

•  	�����	�����������������
�� to resource contention

− Optimize for time� and energy�efficiency

F1 F2

F3

F6F5

F4

Time

Dynamic Invocations of Example Code and Dependence Graph 

�������������	���
��	����
 �

���������������������������������
	

����

Example of Statically�Sequential Code

• (
���
�
�	������������������
��

F2

t1           t2                 t3                        t4        t5              t6

Example Dataflow Execution Schedule on 3 Cores

P1

P2

P3

F1

F2

F6

F2

F3

F4 F5

F3

Precise�Restartable Execution

• Order of executing computations tracked using a 

����	���-
��

• Functions  “retired” in program order

• Computation state checkpointed in .
������/
����

− Restored on exception, if needed

• Exploit �
���
���-�������������
��

• Program execution unfolds sequentially

− Functions execute concurrently (dataflow schedule)

• Data dependences  between functions established 

dynamically (using data sets) 

• Dynamically establish dependences to honor

• (��
���
�����	�����
����, predictable and 

repeatable execution

• Freedom from deadlocks; guaranteed forward 

progress

•  ��
���������������������
�
���to optimize efficiency

• ����
������������
�
�� of halted computations

Applications:
Barneshut
Blackscholes
Bzip2
Dedup
Histogram
RevereseIndex

Benefits of Order and Dataflow Execution

• $�����0&'�#
�#�������	
����#����������
�����


����������
���

• "����������
��
�
�������#
�#�����
���������1�������
�����

����#���	���
��2��#����������
��������#�	�

• 3��
���&'����45%'�����������������#��	�1���&���
���2

Time

F2

t1           t2                 t3                        t4        t5              t6

Dynamically Adaptive Execution: F6 Delayed to Improve Efficiency

P1

P2

P3

F1

F2

F6

F2

F3

F4 F5

F3

Time
Delayed F6

BaseBase

0

2

4

6

8

10

8x Nehalem

Core i7-965

16x Barcelona

Opteron 8350

32x Barcelona

Opteron 8356

S
p

e
e

d
u

p

Harmonic Mean of Achieved Speedups

Pthread

Dataflow

0

0.2

0.4

0.6

0.8

1

Joules Seconds

R
e

la
ti

v
e 

C
o

m
p

a
ri

so
n

On Intel, 4-core, 8-thread Sandy 3.4GHz Sandy Bridge

Improving Time- and Energy-Efficiency

Intel TBB

Feedback-driven Threading

Prometheus

Our Approach

60

160

260

360

460

560

0.05 0.63 0.70 0.72 1.00 1.09 1.11 1.14 5.56 6.67 6.80 33.33 52.63 66.67

E
x

e
cu

ti
o

n
 T

im
e

 (
s)

Fault rate (1/s)

Tolerating Exceptions (Bzip2) Base (24)

Base (20)

Base (16)

Base (12)

Base (8)

Base (4)

Base (2)

Base (1)

DF (24)

DF (20)

DF (16)

DF (12)

DF (8)

DF (4)

DF (2)

DF (1)

DF = dataflow
(n) = n threads

DataflowDataflow


