
Prototyping the DySER Specialization Architecture with OpenSPARC

Jesse Benson, Ryan Cofell, Chris Frericks,

Venkatraman Govindaraju, Chen-Han Ho, Zachary Marzec, Tony Nowatzki,

Karu Sankaralingam

University of Wisconsin-Madison

Contact Email: karu@cs.wisc.edu

This paper describes the prototype implementation of the DySER specialization architecture integrated into the OpenSPARC

processor. The paper’s description covers the hardware, compiler, and application tuning. The prototype system provides

speedups up to 14× over OpenSPARC (geometric mean 5×). The architecture is more flexible than SIMD and GPU- based

acceleration while supporting a more diverse set of workloads.

Overview Future processors must improve microarchitectural

efficiency in order to overcome slowing transistor energy effi-

ciency and sustain performance growth. The DySER architec-

ture uses dynamic specialization to provide energy efficient

performance improvements by complementing conventional

processors. By using a co-designed hardware-compiler ap-

proach that avoids disruptive hardware or software changes,

the architecture Dynamically Specializes Execution Resources

to match application phases and achieves both functionality

specialization (like Garp, Chimaera, Conservation-Cores) and

parallelism specialization (like GPUs and SIMD short-vector

extensions). We describe here the DySER architecture and its

execution model, design and implementation of its compiler,

prototype implementation, and conclude with performance re-

sults and significance of this work.

Architecture DySER is an array of configurable functional

units connected with a circuit switched network of simple switches

as shown in Figure 1. A functional unit can be configured

to get its inputs from any of its neighboring switches. When

all its inputs arrive, it performs the operation and delivers the

output to a neighboring switch. Switches can be configured

to route their inputs to any of their outputs, forming a circuit

switched network. With this configurable network of func-

tional units, a specialized hardware datapath can be created for

a sequence of computation. To enable pipelining and dataflow

like execution, both switches and functional units implement a

simple credit based flow control that ensures data is forwarded

only when the credit is available. Credits are generated when

a functional unit/switch can accept new data. The switches

in the edge of the array are connected to FIFOs, which are

exposed to the processor core as DySER’s input/output ports.

DySER is tightly integrated with a general purpose processor

pipeline, and acts as a long latency functional unit that has a

direct datapath from the register file and from memory. The

processor can send/receive data or load/store data to DySER

directly through ISA extensions.

Execution Model Figure 2 shows DySER’s execution model.

Before a program uses DySER, it configures DySER by pro-

viding the configuration for functional units and switches. Then

it sends data to DySER either from registers or from memory.

Once data operands arrive at DySER’s input FIFOs, they fol-

low the configured path through the switches. When the data

operands reach the functional units, the functional units per-

form the operation in dataflow fashion. Finally, the results of

the computation are delivered to the output FIFOs, from where

the processor fetches the outputs and sends them to the regis-

ter file or to memory using ISA extensions. Further details are

here [3, 2].

Compiler Design and Implementation DySER’s compila-

tion consists of four main phases and the key mechanism we

leverage is the development of a new program representation

called the Access-Execute Program Dependence Graph (AEPDG)

that exposes the spatial and temporal aspects of dependences

to the compiler. The four phases are : i) Selecting regions from

the full program Program Dependence Graph (PDG) that are

candidates for mapping to the DySER hardware. ii) Formation

of the basic AEPDG encapsulating those code regions. iii)

AEPDG transformation and optimizations to meet the good-

ness characteristics for the DySER architecture. iv) Code gen-

eration of the AEPDG. Our compiler implements a set of judi-

ciously chosen and intuitive heuristics to produce good quality

code as part of the transformations and optimizations phase.

These are:

• Loop Unrolling/PDG Cloning

• Strip Mining/Vector Deepening

• Subgraph Matching

• Execute-PDG Splitting

• Scheduling Execute-PDG

• Loop Unrolling/Dependence Analysis

• Traditional Loop Vectorization

• Load/Store Coalescing.

To implement our compiler, we leverage the LLVM com-

piler framework and its intermediate representation(IR). We

have developed LLVM optimization passes that process the

LLVM-IR to construct the AEPDG and apply the associated

transformations. Finally, we extend the LLVM code-generator

to assemble DySER instructions and configurations.

Prototype Implementation We have completed a full RTL

implementation of the DySER architecture integrated into the

OpenSPARC pipeline. In terms of physical design, we have

synthesis based results. The DySER block occupies an area of

1.54 mm
2 using a 55nm ASIC library, and on average con-

sumes 72 mW.

In terms of implementation complexity, our prototype shows

the DySER design is practical. The final interface consisted of

only 11 signals in the RTL between OpenSPARC and DySER,

Dynamic Synthesized
 Execution Resources

 D
y
S
E
R
 O

U
T
P
U

T
 IN

T
E
R
F
A
C
E

D
y
S
E
R
 IN

P
U

T
 IN

T
E
R
F
A
C
ESwitches

Functional Unit

Register

 File

ICache

DCache

Fetch Decode Execute Memory Writeback

Decode
Execution

 pipeline

FU FU

FUFU

FU

S S S

S

SSS

S

S

S
Decoder

(a) Functional Unit (b) Switch (c) Credit signal path (d) Network

data

Credit

Decoder

Computation
 logic

Switch

Figure 1: Processor Pipeline with DySER Datapath and DySER Elements

9

for(i=0; i<n; ++i) {
if(a[i]>0)

c[i] = 1/b[2i];
else

c[i] = b[2i]*2;
}

9
DyConfig <Config>

for(i=0; i<n-n%4; i+=4){

DyLd_Vec a[i:i+4]->P0;

DyLd_Vec b[2i:2i+4]->P1;

DyLd_Vec b[2i+4:2i+8]->P1;

DySt_Vec P2->c[i];

}

...

>0

1/ φ

P0(a):

×

0123

Input

Fifos

P1(b): 0x2x

P2(c): 0123

Output Fifo:

Configuration Bits:

Tile FU

1,1 >

1,2 / …
Switch

1,1 W->SE

2,1 S->SE

1,2 W->SE, W->E ...

Tile 1,1 2,1 3,1

(a) Original Loop (b) DySER-Accelerated Code (c) DySER Configuration

Figure 2: DySER Execution Model

and a total of less than 750 lines of code modified in OpenSPARC.

Further details are here [1].

We have also completed a mapping to FPGA of the full

design using the Vertex-5 board. This FPGA implementation

boots unmodified Ubuntu 7.10 Linux and runs C/C++ pro-

grams compiled through our toolchain. For detailed perfor-

mance evaluation on our FPGA prototype, we implemented

several FPGA optimizations to the architecture. These include

simplifying the switches, “hardening” the configuration infor-

mation and creating a FPGA bit-file specific to each applica-

tion, and simplifications to the load-store interface.

Performance To measure DySER’s efficiency in specializa-

tion, we have evaluated its performance on a suite of SIMD

and GPU workloads to capture its functionality and parallelism

specialization capability. We compare performance of DySER-

accelerated implementations of these benchmarks to the se-

quential OpenSPARC implementation, and hand-optimized SIMD

and GPU implementations. Based on measurements on our

FPGA prototye implementation, compared to the OpenSPARC

baseline, the DySER prototype, provides a speedup of up to

7×, with a geometric mean speedup of 3× on this diverse

benchmark suite. Adding a vectorized mode to DySER pro-

vides up to 14× speedup with a geometric mean speedup of

5×. We observe that OpenSPARC’s single-issue pipeline is

the main bottleneck throttling the rate at which DySER is fed.

When integrated with a dual-issue out-of-order processor, re-

sults from our cycle-accurate performance simulator show DySER

continues to provide similar speedups: up to 14×, with a geo-

metric mean speedup of 3.5×. As elaborated in [2], compared

to SSE, DySER provides geometric mean 2.5× speedup, and

compared to GPU execution, it provides 1.2× speedup.

Implications and Significance DySER is the culmination and

generalization of trends already occurring for popular paral-

lelism based accelerators. SSE has been augmented with both

functionality-specialized and non-purely word parallel instruc-

tions. Instructions in NVIDIA Kepler GPUs are specialized

for the particular region with compiler annotations indicating

when to issue.

Not only is DySER a more natural evolution of special-

ization strategies, but it is also more practical to implement.

From a software perspective, it is a more flexible compiler tar-

get than SSE, and DySER does not require a new software

stack and application implementations as for the GPU. From a

hardware perspective, its interface enables simple integration

with a processor pipeline.

The most profound implication of DySER is that the exe-

cution model and architecture provide a practical way to im-

plement instruction-set specialization, SIMD specialization, and

domain-driven accelerators using one substrate. With its im-

pressive speedup and corresponding energy gains, DySER sig-

nificantly improves architectural energy efficiency using spe-

cialization. The novel architecture, its prototype implementa-

tion, and energy efficiency implications of the execution model

provide a set of promising mechanisms.

References

[1] J. Benson, R. Cofell, C. Frericks, C.-H. Ho,

V. Govindaraju, T. Nowatzki, and K. Sankaralingam.

Design Integration and Implementation of the DySER

Hardware Accelerator into OpenSPARC. In HPCA ’12.

[2] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani,

N. Satish, K. Sankaralingam, and C. Kim. DySER:

Unifying Functionality and Parallelism Specialization for

Energy Efficient Computing. IEEE Micro, 32(5), 2012.

[3] V. Govindaraju, C.-H. Ho, and K. Sankaralingam.

Dynamically Specialized Datapaths for Energy Efficient

Computing. In HPCA ’11.

Prototyping the DySER Specialization Architecture with OpenSPARC

Jesse Benson, Ryan Cofell, Chris Frericks, Venkatraman Govindaraju,

Chen-Han Ho, Zachary Marzec, Tony Nowatzki, and Karu Sankaralingam

DySER Approach

• Compiler assisted dynamically specialized

computation through heterogeneous array

of functional units

• DySER configured once for multiple invocations

DySER Compiler

• LLVM based compiler

• Generates specialized binaries for DySER

from C/C++ source code

OpenSPARC T1 Integration

• Limited ISA extensions required

d_init, d_send, d_recv, d_load,

d_store

• Only eleven interface signals in RTL/microarch

• Few lines of changed Verilog code:

DySER Performance

• Throughput/high-performance workloads

• Competitive or surpasses SIMD/GPU approach

Non-vectorized (1 wide) : 2.5x speedup

Vectorized (8 wide): 4.9x speedup

FPGA Prototype

• Utilizes Xilinx Virtex5 FPGA Board

• Fits a ͞hard͟ 4x4 DySER with fixed paths

• Boots unmodified OpenSPARC Ubuntu 7.10

• DySER is not on the critical path!

DySER Architecture

• Alongside Execute stage in processor pipeline

• Concurrently executes DySER and non-DySER

code

ASIC Synthesis @ 55nm

Area: 1.54mm2 Power: 72mW

Profiling

Application

Compiler

Access

Subgraph

Execute

Subgraph

Core DySER

0

2

4

6

8

10

12

14

ff
t

k
m

e
a

n
s

m
m

sp
m

v

st
e

n
ci

l

tp
a

cf

m
ri

-q

co
n

v

ra
d

a
r

tr
e

e
se

a
rc

h

G
M

S
p

e
e

d
u

p

OpenSPARC
DySER (non-vector)
DySER (vector-8w)

Access Execute PDG

(AEPDG)

1/

1,0
>0

× 2

1,0

f

0,0

b[2i+2]

c[i]

a[i]

0,0

Coalesced AEPDG

1/

0,0

1,2
>0

× 2

0,0

1,2

f
0,0

1,1

b[2i]

c[i]

a[i]

0,0

1,1

AEPDG

Legend:

X,Y

X: Instance

Y: Offset

b[2i]

0,0

0,0

a[i+1]

1,0

c[i+1]

1,0

0x2x

0
2

0123

In
p

u
t

F
if

o
s

Vector Ports

P0(b) P1(a)

1/

>0

× 2

f

3210 P3(c)

0
2

1
2
3

0

0
1
2
3 DySER

Mapping

O
u

tp
u

t

F
if

o

>0

1/ f

P0(a):

×

0123

Input

Fifos

P1(b): 0x2x

P2(c): 0123

Output Fifo:

Configuration Bits:

FU

1,1 >

1,2 / …
Switch

1,1 W->SE

2,1 S->SE

1,2 W->SE, W->E ...

1,1 2,1 3,1

1,1 2,1

for (i=0; i < n; i++) {

if (a[i] > 0)

c[i] = 1 / b[2i];

else

c[i] = b[2i] * 2;

}

#pragma dyserize

for (i=0; i < n; i++) {

if (a[i] > 0)

c[i] = 1 / b[2i];

else

c[i] = b[2i] * 2;

}

Scalar Code DySER Code Scheduled DySER

Unit Lines

Changed

Notes

IFU 275 Reserved opcodes used for DySER Instructions

LSU 23 Reverse engineered memory control

EXU 216 DySER model Verilog and 18 FF added

MMU 0 Unchanged!

Total 514 Minimal changes!

