X-Gene™: 64-bit ARM CPU and SoC

Paramesh Gopi Gaurav Singh Greg Favor

8.29.2012

Cloud Computing Technology Trends

Fabric Interconnect between Rack Units

- Smaller & power-efficient CPUs; Beefier memory & IO subsystems
- Distributed Fabric → networking & storage
 IO sharing & virtualization

Server-on-Chip (SoC) Approach

- Integrated NIC and IO chipset
- CPU/ GPU combination for HPC applications

Active Power Management

- Firmware based optimization based on user
 Workload (Power is measured through TDP)
- Maximize performance while managing TDP

Server Standardization

- Service provider specified
- ODM designed & manufactured
- Open Source/ non-commercial SW base
- Open Stack, Open Compute

Cloud Servers - Typical Form Factors

Public Cloud

Applications

Scale Out Services → Hosted Mail,
 Search, Social, Cloud Hosting

Platforms

 Dell PowerEdge C, HP ProLiant Microserver, DCS custom

Typical Specifications

- 1/2 Socket 2/4 core 2.8GHz, 80W
- 280 SpecIntRate
- System Power <500W; Cost <\$2K

Building Out vs. Scaling Out

TODAY: 2 RU

- 2 Nodes per Rack Unit
- 2 Sockets @ 95W each
- Shared Chassis, Power Supply & Cooling
- Google, FB, Amazon Custom Datacenters

3 RU

- 8/12 Nodes in 3RU
- Single Socket @ 45W
- Shared Chassis, Power Supply, & Cooling
- Dell PowerEdge 5220, Supermicro MicroCloud

TOMORROW: 10 RU

- 256/512 Nodes in 10RU
- Single Socket @ 10-20W
- Shared IO Resources
- Integrated ToR Switch
- SeaMicro SM10000, HP Redstone

Opportunities from Hardware

Integration

- Cores + memory + networking + I/O
- Lower latency, better QoS
 - Multiple Priorities
 - B/W guarantees

Efficient Out-of Order Cores

- Break tradeoff between wimpy and brawny cores
- Energy efficiency at good performance (ARM-based processors are well suited here)

Virtualization Support

 Improve utilization without hurting performance

Highly Integrated Server on Chip

Efficient Low Latency Interconnect

Cloud Requirements → Integrated, Right-Sized Compute. Memory. Network.

ARMv8 (Oban): Fully Backwards Compatible New 64b ISA + Current 32b ISA

New: ARMv8

- 64b (General) and 128b (FP,SIMD) registers
- SP, PC no longer general purpose registers
- Uniform load/store addressing modes
- Larger data and instr. offset ranges
- Simplified load/store multiple instructions

- Reduced conditional instructions
- 32 128b FP/SIMD architecture registers
- No SIMD on general purpose registers
- New instructions for debug, TLB, barriers
- New Crypto acceleration instructions

ARMv8

- New High Performance 64bit ISA + compatibility with existing 32bit ISA
- Full CPU, IO, Interrupt, Timer Virtualization
- Enhanced 128b SIMD operations
- High performance Floating-Point operations including FMADD
- Standard Performance Monitoring, Instr. Trace and Debug Architecture

X-Gene™ CPU Design Goals

High-Performance Low-Power Microarchitecture

- Design point targets balance between performance, power, and size
- Maximum "bang for the buck"

Low Power Microarchitecture Features

- Sophisticated branch prediction, Caches, Unified register renaming
- Minimal instruction replay cases
- Separate smaller schedulers per pipe
- Full set of power management features

<u>Good</u> Single-Thread Performance, but also Efficiently Scalable to Many Cores

- Scalable CPU and interconnect architecture 2-128 cores
- High bandwidth, low latency switch fabric > 1Tbps
- High-performance distributed hardware cache coherency

Technology Portability

- Fully synthesizable RTL
- Semi-custom cell-based design methodology
- Small targeted set of custom macros (plus clock distribution cells/macros)

Processor Module

- 2 cores + shared L2 cache
- 4 wide out-of-order superscalar microarchitecture
- Integer, scalar, HP/SP/DP FPU and 128b SIMD engine
- Hardware virtualization support
- Hardware tablewalk and nested page tables
- Full set of static and dynamic power management features
 - Fine grain/macro clock gating, DVFS
 - C0, C1, C3, C4, C6 states

Cache Hierarchy

- Separate L1I and L1D caches
- Shared L2 cache among 2 CPUs
- Last-level globally shared L3 Cache
- Advanced hardware prefetch in L1 and L2
- L2 inclusive of L1 write-thru data caches

RAS

- ECC and Parity protection of all Caches, Tags, TLBs
- Data poisoning and error isolation

X-Gene™ CPU Block Diagram

X-Gene™ Instruction Fetch

X-Gene™ Instructions Decoding/Grouping

X-Gene™ Reorder Buffer, Dispatch and Control

X-Gene™ Integer, Branch, Load and Store Units

X-Gene™ FPU/SIMD

X-Gene™ Data Cache

X-Gene™ Memory Management

X-Gene™ – CPU Memory Subsystem

High-performance Symmetric Multi-core Design

- Modular architecture
- Three level cache hierarchy
- Globally shared L3 Cache

Coherent Network

- Runs at full CPU frequency
- <15ns latency, ~200GB/s B/W</p>
- Over 400 transactions in flight
- Central snoop controller and ordering point
- Decoupled frequency and power domains
- Support global cache and TLB inv operations

Bridges

- Memory Bridges to DRAM interfaces
- IO Bridge for SOC connectivity

X-Gene™ Server on Chip

64bit ARM Server Class CPU → Multi-core for Distributed Computing
Increased Memory Capacity and 10G I/O Integration
Integrated Peripherals and L2 Switching
Workload Specific Acceleration

Available: 2H'12

Right Sizing + Connected On-Chip Fabric

- Customizable Blade Design
- Configurable swappable blades
 within 1 sled
- Networking/ Compute/ Storage
 shared over common bed of CPUs
 Saves Power & Cost
- Overall System Optimization

- System Capabilities
 - 1000s of CPU cores in 10RU
 - 100s of CPU cores per blade
 - 100s of Gbps of network bandwidth
 - 10s of Tbps of interconnect fabric bandwidth

- Integrated NIC and IO chipset
- Load Balancing Across multiple
 blades to Optimize System Balance
- Shared Resources for System
 Management, Power and Cooling

X-Gene™