

© 2012 IBM Corporation

IBM

Outline

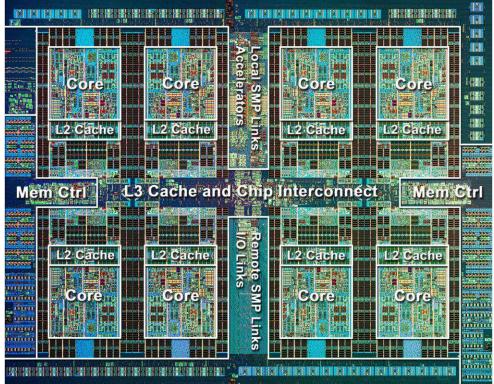
2

- POWER Processor History
- Design Overview
- Performance Benchmarks
- Key Features
 - Scale-up / Scale-out
 - The new accelerators
 - Advanced energy management

Summary

August 29th, 2012

3


32nm

August 29th, 2012

20+ Years of POWER Processors 45nm 65nm POWER7+™ POWER7[™] RS64IV Sstar -Multi-core 130nm -EDRAM POWER6™ RS64III Pulsar 180nm -Ultra High Frequency 180nm RS64II North Star 0.25um POWER5[™] -SMT RS64I Apache 0.35ur BiCMOS **⊾**0.5um Major POWER® Innovation POWER4™ -2001 Dual Core Processors _0.5um Muskie A35 -Dual Core 0.22um -2001 Large System Scaling 0.5um -2001 Shared Caches -Cobra A10 -64 bit -2003 On Chip Memory Control -2003 SMT 0.35um POWER3™ -2006 Ultra High Frequency -2006 Dual Scope Coherence Mgmt 0.72um -2006 Decimal Float/VMX POWER2[™] -2006 Processor Recovery/Sparing P2SC -2010 Balanced Multi-core Processor 0.25um -2010 On Chip EDRAM RSC 0.35um -2012 On chip Accelerators 1 0um 0.6um -2012 Massive L3 cache 604e -2012 Power Gating POWER1 -AMERICA's * Dates represent approximate processor power-on dates, not system availability 1995 2010

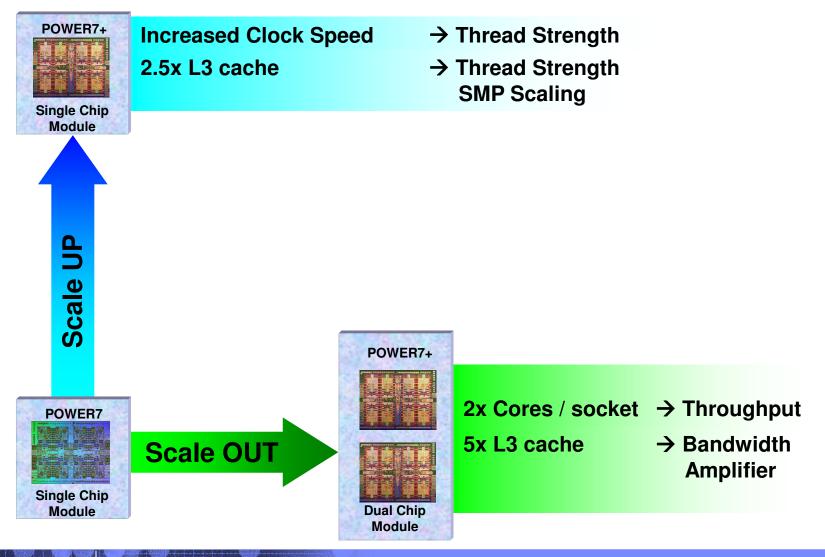
POWER7+ Processor Chip

- Area: 567mm2
- Eight processor cores
 - 12 execution units per core
 - 4 Way SMT per core
 - 32 Threads per chip
 - 256KB L2 per core
- Scalability up to 32 Sockets
 - 360GB/s SMP bandwidth/chip
 - 20,000 coherent operations in flight
- Technology: 32nm lithography, Cu, SOI, eDRAM, 13 metal levels
- 2.1B transistors
 - Equivalent function of 5.4B
- 80MB on chip eDRAM shared L3
- Accelerators
- Enhanced Power management
- Binary Compatibility with POWER6/7

An Improved Core

- Up to 25% frequency gain due to mapping into 32nm technology and power management improvements.
- Increase of L3 memory capacity by 2.5x
- Doubled single precision floating-point performance
- Added Power Gating regions for Core/L2 & L3 regions

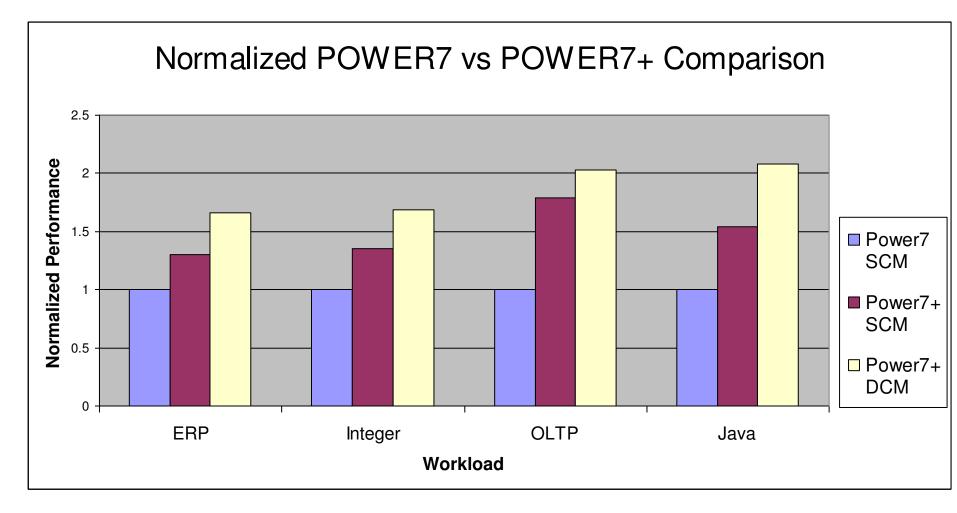
Core/L2 Power-Gating


L3 Power-Gating

	an an Stan and Stan an Stan an Stan an Stan and Stan and Stan and Stan	
Contractor of Contractor		1007724 B 5007724
The same line of the same line	DFU Wein	
100921013		100000000000000000000000000000000000000
and a section		
1.1111		

		224 22
Contract of Contract		
and francisco		
		
Jacobie State		

6

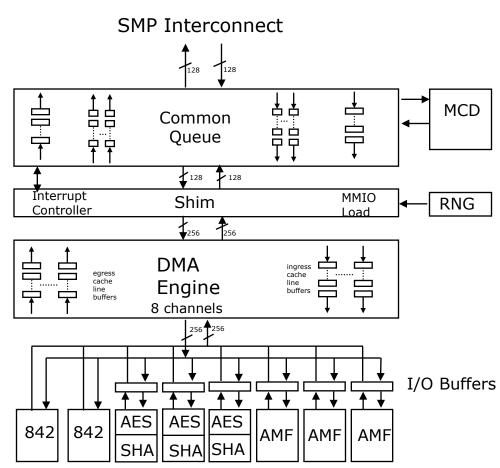


Optimized in Two Dimensions

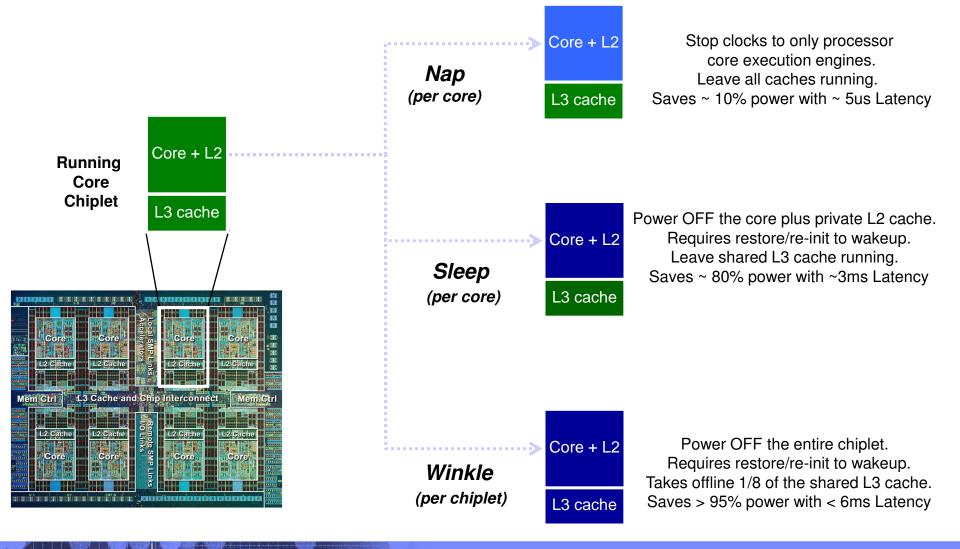
Performance View

POWER7+ Accelerators

- Provide CPU off-load and workload speedup for SSL, encrypted file system, and active memory expansion (AME).
 - Asymmetric Math Functions (AMF)
 - RSA cryptography
 - ECC (elliptic curve cryptography)
 - Advanced Encryption Standard (AES)/Secure Hash Algorithm (SHA)
 - Symmetric-key cryptography with combinational modes
 - Random Number Generator (RNG) True hardware entropy generator
 - Cannot be algorithmically reverse engineered
 - 842 proprietary compression algorithm
 - High bandwidth, area efficient


Integrated across silicon, ISA, hypervisor, and OS

Accelerators Details


- Advanced Encryption Standard engine
 - Modes: ECB, CBC, CTR, CCM, CCA, GCM, GCA, GMAC, CM, F8, XBC-MAC-96
 - Key lengths: 128b,192b, 256b
 - Three engines
- Secure Hash Algorithm engine
 - Modes: SHA-1, SHA-256, SHA-512, MD5
 - HMAC supported for SHA
 - Three engines
- Asymmetric Math Functions
 - Modular math functions for RSA (Rivest, Shamir, Adleman) and ECC (elliptic curve cryptography): mod add, mod subtract, mod inverse, mod reduction, mod multiplication, mod exponentiation, mod exponentiation CRT(integer only)
 - Point functions for ECC GF(p) and GF(2m): point add, point double, point multiply
 - RSA lengths: 512b,1024b, 2048b, 4096b
 - ECC GF(p) lengths: 192b, 224b, 256b, 384b, 521b (SuiteB)
 - ECC GF(2m) lengths: 163b, 233b,283b, 409b, 571b (SuiteB)

Random Number Generator

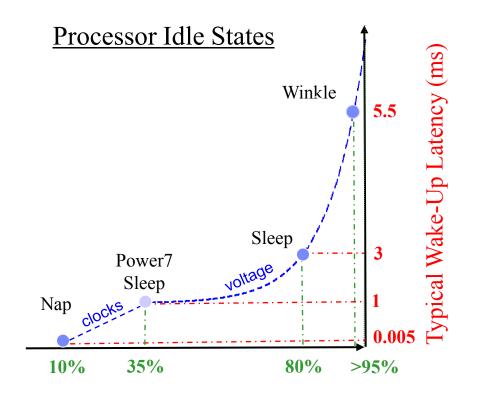
- All digital design which produces 64b random numbers accessible by MMIO load instructions
- Correctness verified against the NIST Random Number Generator Test Suite
- Active Memory Expansion
 - IBM-proprietary algorithm with 8B-, 4B-, and 2B-phrase parsings
 - Throughput: Up to 8 bytes of compression or 8 bytes of decompression per bus cycle.
- MCD
 - Hardware to predict whether memory access is on-node or off-node.

POWER7+ Sleep & Winkle Overview

Save Energy When Idle

Three idle states were implemented to optimize power vs. latency

Nap (Continued POWER7 support)


- Optimized for wake-up time
- Turn off clocks to execution units only
- Caches remain coherent

• Sleep (Improved from POWER7)

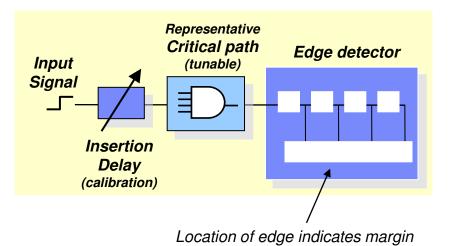
- More savings at increased latency
- Purge and power off core plus L2 caches
- Leave shared L3 cache running

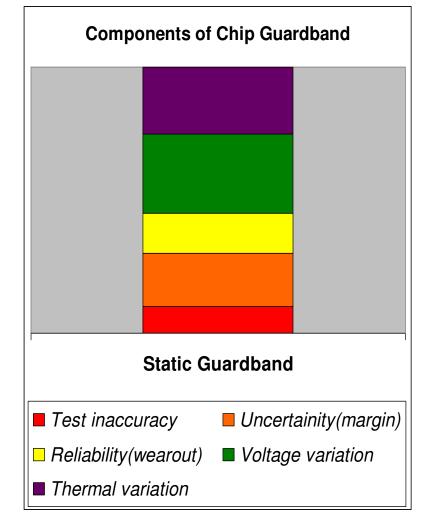
• Winkle (New for POWER7+)

- Maximum savings at higher latency
- Purge and power off entire chiplet
- Takes eighth of chip L3 cache offline

Processor Energy Reduction (compared to Idle Loop)

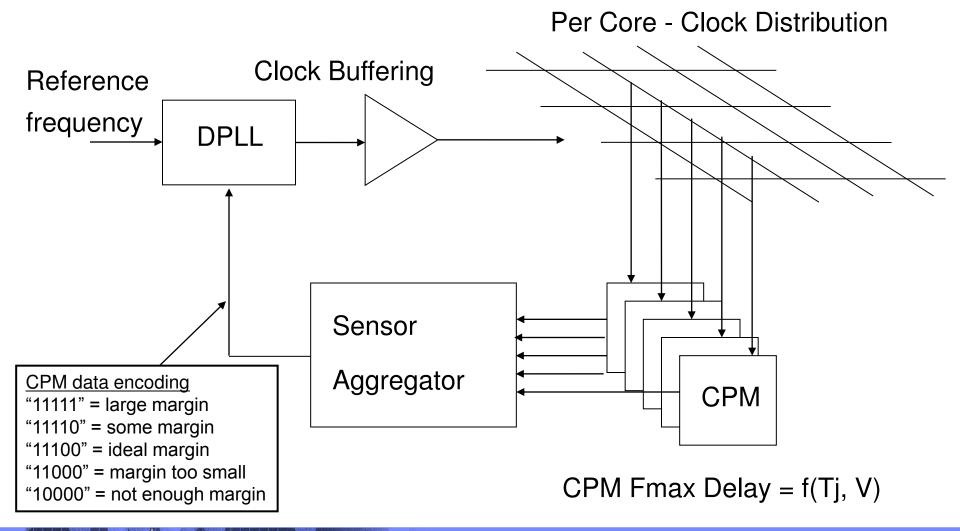
Real Time Chip Guardband

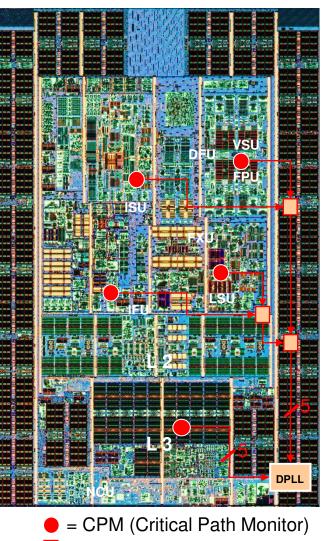

Conventional guardband


 <u>Static</u>, conservative voltage margins for potential worst-case conditions

 Causes unnecessary loss of energy efficiency during typical server usage

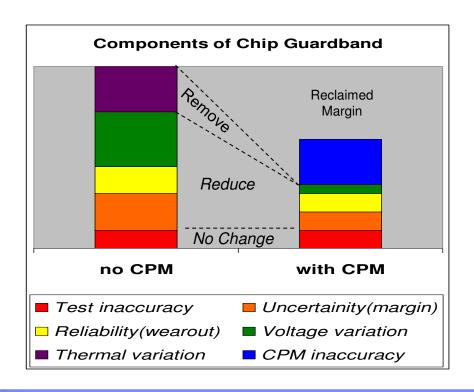
Critical Path Monitor (CPM)


 <u>Real Time</u> detection of available circuit timing margin


Real Time Guardband – DPLL/CPM feedback loop

Systems & Technology Group

POWER7+ Core CPM Infrastructure



= AND Buffer

CPMs are strategically placed in known hot spots typically near micro-architecture critical paths.

The real time feedback from CPMs can reduce how much margin is needed for various guardband components.

Real-time guardbanding will allow for greater energy efficiency.

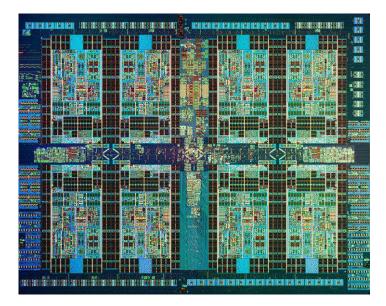
Advanced 32nm Technology

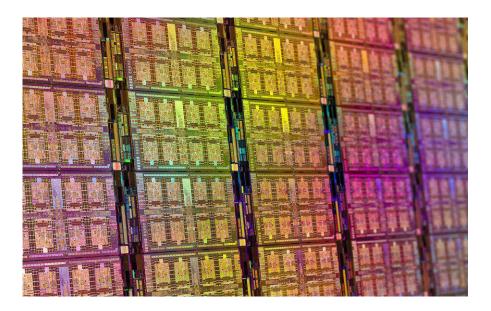
Systems & Technology Group

- 32nm High-K Metal Gate (HKMG) SOI based logic technology
 - 3 logic transistor threshold voltages (V₁) optimizes power/performance
 - 13-layer BEOL metal stack minimizes cross die latency
 - 1x, 2x, 4x, 8x, & ultra-thick metal layers

eDRAM provides 3-4x density advantage over SRAM

 \geq Advanced features make the node effectively perform as one with sub-32nm features


EDRAM cell


BL

Node a

POWER7+: The next major step in IBM's roadmap

- > Brings significant improvement to both scale up & scale out systems.
- > The new accelerators optimize specific functions while offloading CPU.
- > Advanced energy management greatly improves data center efficiency.

Acknowledgements:

17

Many Thanks to the entire POWER7+ design, manufacturing and product teams.

Questions: Send email to: sctaylor@us.ibm.com