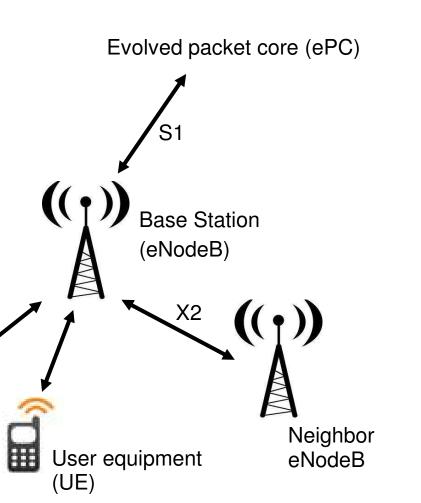


High performance and efficient single-chip small cell base station SoC

Kin-Yip Liu Cavium, Inc. kliu@cavium.com

Hot Chips 24, August 2012


Presentation Overview

- Base station processing overview
- Why small cells and heterogeneous Radio Access Network (RAN)
- Small cell design based on OCTEON Fusion
- OCTEON Fusion CNF71XX architecture
- CNF71XX design
- Software models
- Summary

LTE Wireless Network Overview

- LTE equipment:
 - Base Stations eNodeB
 - User equipment (UE), e.g. cell phone, dongle for notebook PC
 - Core network Evolved Packet Core (ePC)
- An eNode interfaces with:
 - ePC (multiple nodes with different functions)
 - Control, signaling
 - To voice & data networks
 - UE's
 - Neighbor eNodeB's
 - Communicate load and interference info
 - Handover UE's

Kin-Yip Liu

Aug 2012

Hot Chips 24

LTE Protocols & Processing

- eNodeB relays information between UE and ePC
- eNodeB and UE communication protocol:

Protocol layers	Processing functions
RRC (layer 3)	Set up and maintain radio bearers. Manage radio resources. Control functions. Handover decisions
PDCP (layer 2)	En/decrypt over-the-air traffic, Header de/compression
RLC (layer 2)	Segment and reassemble traffic. Ensure in-order traffic delivery. Re-transmit as needed
MAC (layer 2)	Schedule use of over-the-air resources. Select PHY configuration for transfers. Collect stats & report to RRC
PHY (layer 1)	Physical layer: OFDM for downlink. SC-FDMA for uplink

- eNodeB and ePC communication protocol:
 - IP network, IPSec protected, GTP tunnels of user data in UDP/IP, SCTP for control traffic

Classes of Base Stations

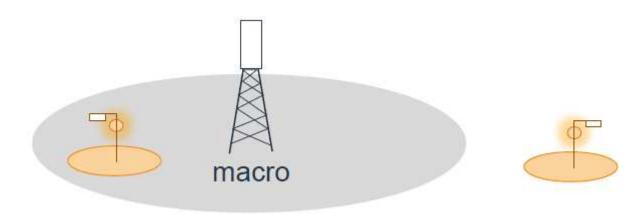
Small Cells						
	Home Femto	Enterprise Femto	Pico	Micro	Macro	
Cell Radius	50m	75m	250 - 400m	2 - 20km	20km	
No. of users	8	32	128	1200	3600	
Peak data rate	50Mbps DL 25Mbps UL	100Mbps DL 50Mbps UL	150Mbps DL 75Mbps UL	300Mbps DL 150Mbps UL	900Mbps DL 450Mbps UL	
User Mobility	4 km/hr	4 km/hr	50 km/hr	350 km/hr	350 km/hr	
Locations	Home	Office, school, apartment buildings, malls	Urban hotspots, rural areas	Urban, rural areas	Metro, traditional approach	

DL – Downlink. Traffic going from network to user UL – Uplink. Traffic going from user to network

High performance and efficient single-chip small cell base station SoC

Kin-Yip Liu Aug 2012

Page 5


Additional Small Cell Requirements S CAVIUM

- WiFi option
 - Single platform for Small Cell + Access Point
 - SoC must provide performance headroom for both functions
- Power-over-Ethernet
 - Simplify system deployment, but limited system power supply
 - SoC must consume very low power
- Time synchronization
 - Mandatory for LTE base stations. IP backhaul, no TDM interface
 - GPS option. May not work well in-door
 - Software solutions: IEEE 1588 v2, NTP. In-door OK, cost effective
- Security
 - Authenticated and encrypted software for secure boot

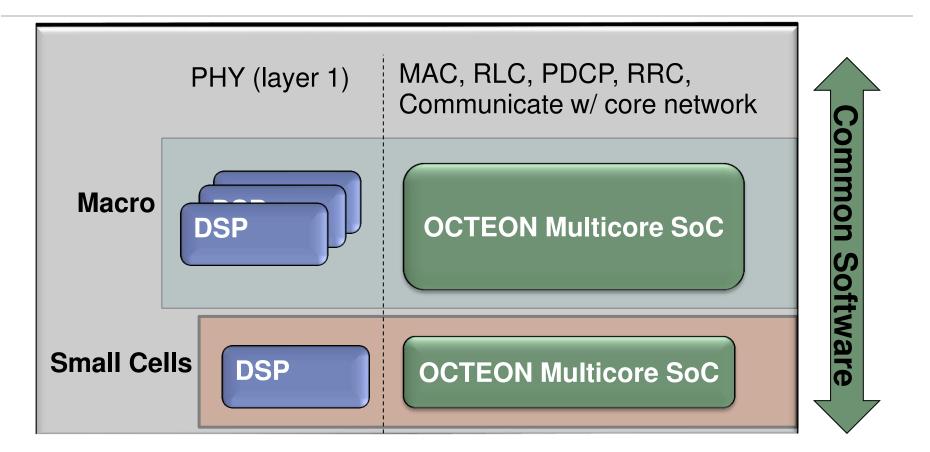
Why deploy small cells?

.....for Hot spots and Not spots

Easing congestion within macro coverage

New coverage in addition to macro

Small Cells essential for LTE coverage, capacity, and throughput


High performance and efficient single-chip small cell base station SoC

Hot Chips 24

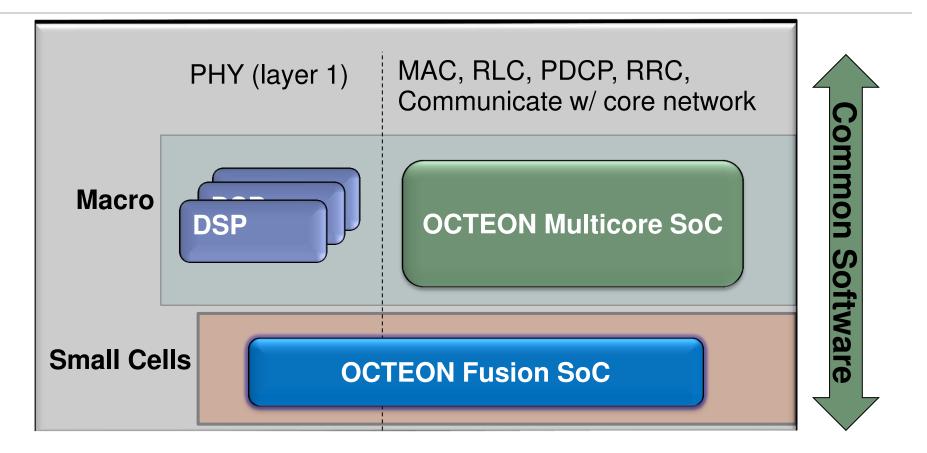
Kin-Yip Liu Aug 2012

Page 7

Current Generation Base Stations Scavium

Single-chip Multicore SoC for Layer 2 and above processing. Common software from Small to Macro cells

High performance and efficient single-chip small cell base station SoC

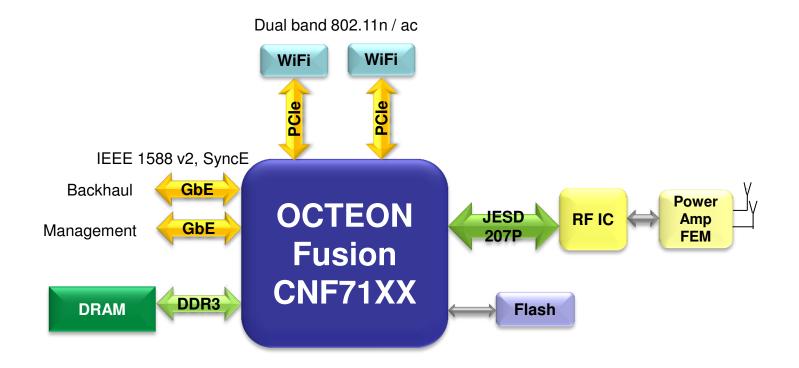

Hot Chips 24

Page 8

Kin-Yip Liu Aug 2012

Next Generation Base Stations

Single-chip Multicore + baseband module SoC for Small Cells. Common software from Small to Macro cells


High performance and efficient single-chip small cell base station SoC Ho

Hot Chips 24

Page 9

Kin-Yip Liu Aug 2012


OCTEON Fusion based Small cell Scavium

Small Cell Base Station + Access Point

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012

OCTEON Fusion CNF71XX GCAVIUM Small cell BaseStation-on-a-chip Family

- High Performance LTE / 3G Small Cell SoC Processors:
 - 4 MIPS64 cores up to 1.5 GHz
 - 6 DSP cores up to 500MHz
 - Many HW Accelerators for Packet Processing, LTE/3G, and Security
 - IEEE 1588 v2, SyncE
 - Authentik secure boot

Highly Scalable

- Spanning 32 to 200+ Users
- 3G and LTE FDD & TDD _
- Up to LTE 20MHz 150 Mbps Uplink (UL) + 150Mbps Downlink (DL)

Headroom for Unique Carrier **Class Features**

- Multi-User MIMO
- Self Optimizing Networks
- Interference Cancellation
- **Advanced Receivers**

High performance and efficient single-chip small cell base station SoC

Kin-Yip Liu Aug 2012

Design Philosophy

High Performance and Power Efficient	 Power and area efficient CPU and DSP cores Scale performance with more cores Not depend on very high frequency or core complexity 		
Short Latencies Deterministic Performance	 Shortest cache and memory latencies. Optimize for determinism Flexible prefetch, cache hints, options to cache packet headers only L2 way partition feature avoids cache pollution 		
Optimized ISA Ease of programming	 MIPS64 r3 instruction set + >80 OCTEON instructions Full C programming. Standard OS and development tools 		
Comprehensive Hardware Acceleration	 TCP/IP, complete packet receive and transmit offload, packet ordering, QoS, work scheduling, buffer de/allocation, IPSec, wireless crypto algorithms, timers, wireless baseband functions Crypto coprocessor in each core. Best latency & determinism 		
Software Compatible Roadmap	 Software compatible from 1-48 cores and across generations Single SDK to develop software for all OCTEONs Software for macro base stations directly reusable for Small Cells 		

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012 Page 12

Baseband Module

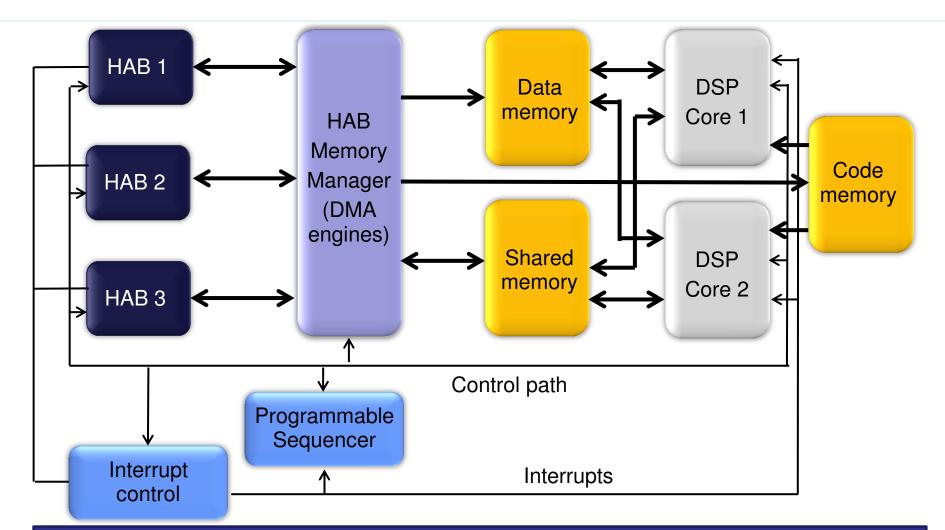
Baseband module processing flows

- Wireless UL and DL processing differ. Partition the DSP cores and assign relevant hardware accelerators for UL Vs. DL processing
- Modular design with flexible partitioning simplifies software design

6x DSP cores optimized for wireless baseband processing

- 3-way VLIW, with 16x MAC or 4x complex MAC vector processing per cycle
- Optimizing instructions for wireless baseband processing
- Dual 128-bit load/store paths transfer up to two vector operands each cycle

Hardware accelerators (HABs)


- Comprehensive set of LTE and 3G, UL and DL relevant accelerators
- Automate offload to accelerators with DMA engines and Sequencer

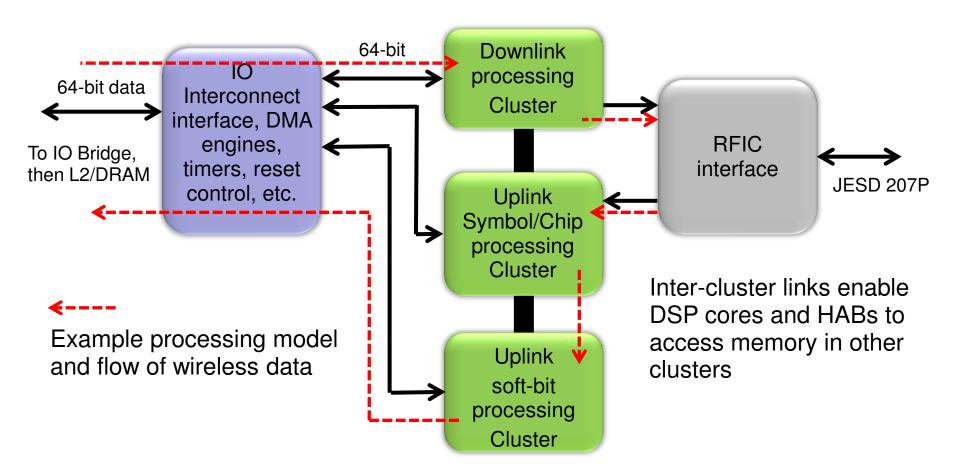
Shared memory interconnect

• DSPs and HABs can access any memory structure in entire baseband module

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012

A Cluster of the Baseband Module

128-bit dual load/store paths enable VLIW DSP cores to fetch two 128-bit vector operands + processing in single cycle


High performance and efficient single-chip small cell base station SoC

Hot Chips 24

Kin-Yip Liu Aug 2012

Page 14

CNF71XX Baseband Architecture

Shared memory interconnect enables flexibility in optimizing the processing models and flows

High performance and efficient single-chip small cell base station SoC

Hot Chips 24

24 Kin-Yip Liu

u Aug 2012

Page 15

OCTEON Multicore

Wireless L2 & L3, Transport, Control, WiFi, Customer Apps

- OCTEON Fusion = OCTEON Multicore + Baseband module
- The OCTEON Multicore part of the SoC is the same architecture as OCTEON Multicore SoCs which have been widely deployed for designing base stations

CPU cores

- 4x OCTEON MIPS64 cores
- Shortest L1 and last-level-cache (L2) latencies among multicore processors
- Power optimizer[™] per-core software controlled power reduction
- Fine-grained clock gating

Hardware accelerators

- Comprehensive packet processing hardware: Headers parsing, classification, RED, QoS, buffer allocation, L4 checksums, traffic rate limiting & scheduling
- Crypto, packet order, work scheduling, timers for TCP and RLC, RoHC

Low latency interconnect

• Split-transaction interconnects and L2 cache run at core frequency

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012

OCTEON enhanced MIPS64 core

Custom designed efficient 64-bit CPU core

- Dual-issue, 8+ stages. Optimized for perf/watt, perf/area
- Short 3 cycles L1 cache load-to-use latency
- MIPS64 r3 instruction set + >80 optimizing instructions

Examples of optimizing instructions added

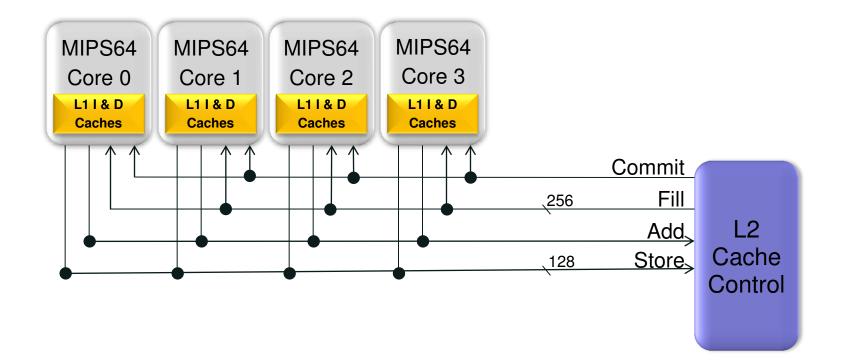
- Atomic memory ops (increment, add, fetch-and-add, etc.)
- Insert/extract arbitrary bit fields within a word
- Branch if certain bit field contains a set bit or not
- Compare operands and set bit0 for equal / not equal
- Additional flavors of prefetch and cache hints
- Population count
- Unaligned load/store

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012

OCTEON Cache Policies

Cache L2Cache DRAM

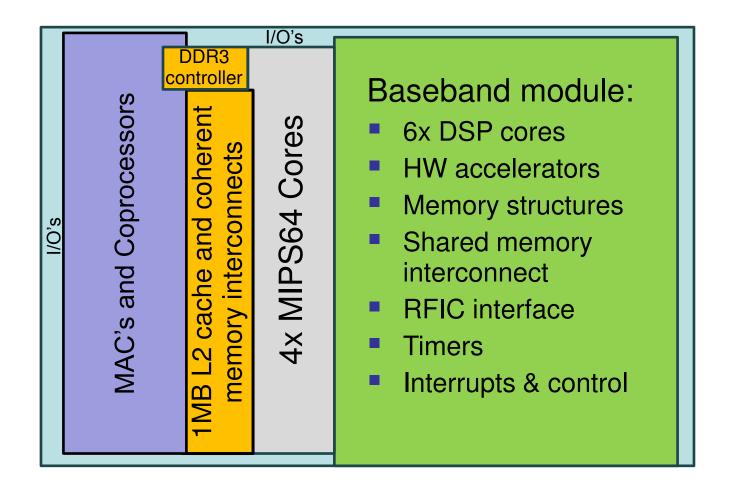
L1 <-> L2 Cache: Write-through


- Excellent performance for networking and wireless applications
- Minimal per-CPU-core cost (power, area)
- Lowest possible read latencies
- Allows many outstanding stores, optimizations
- Automatic L1 error correction

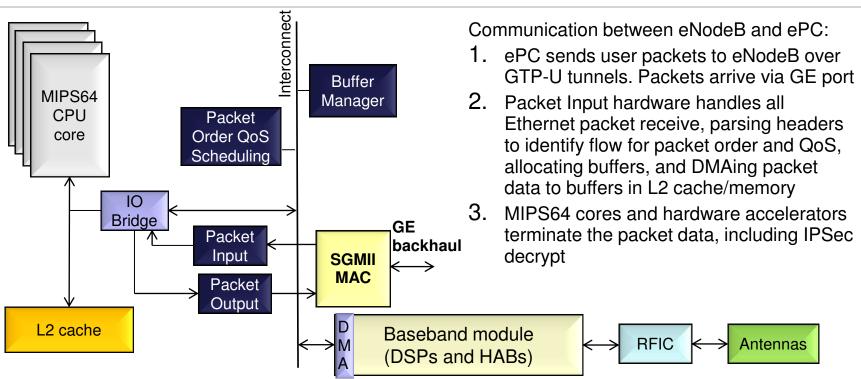
L2 Cache <-> DRAM: Write-back

- Standard DDR3 DRAM DIMM's are highest performance with block transfers
- Minimizes required DRAM bandwidth
- Don't-write-back feature (e.g. for most of packet data) plus additional cache hints

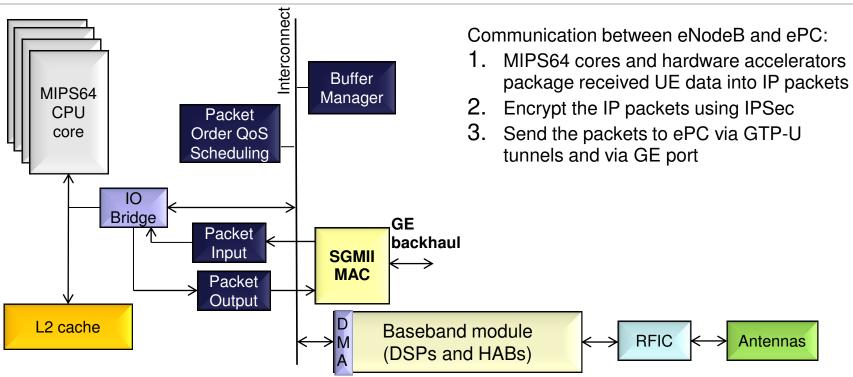
CNF71XX Coherent Interconnect



64-bit CPU cores, split-transaction interconnect, L2 cache & controller all run at core frequency


High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012 Page 19

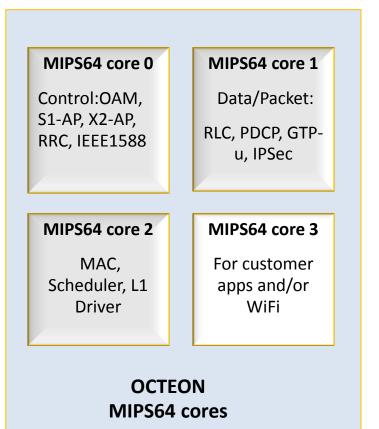
Packet/Data Flow: LTE Downlink (DL) Processing


Communication between eNodeB and UE's with 1ms TTI (transmission time interval):

- 1. MIPS64 cores and accelerators process PDCP, RLC and MAC protocol layers.
- 2. MAC layer processing schedules data and wireless PHY configuration for DL transmission
- 3. Baseband hardware DMAs data from L2 cache to its local memory
- 4. Downlink DSP cores and HABs complete DL processing and transmit data out via RF interface

High performance and efficient single-chip small cell base station SoC Hot Chips 24 Kin-Yip Liu Aug 2012

Packet/Data Flow: LTE Uplink (UL) Processing



Communication between eNodeB and UE's with 1ms TTI (transmission time interval):

- 1. PHY baseband processes UL traffic and detects random access from UE's
- 2. PHY baseband DMAs processed UL data to L2 cache
- 3. MIPS64 cores and accelerators process MAC, RLC, and PDCP layers to terminate received UE traffic into packets.

Mapping eNodeB to Multicore

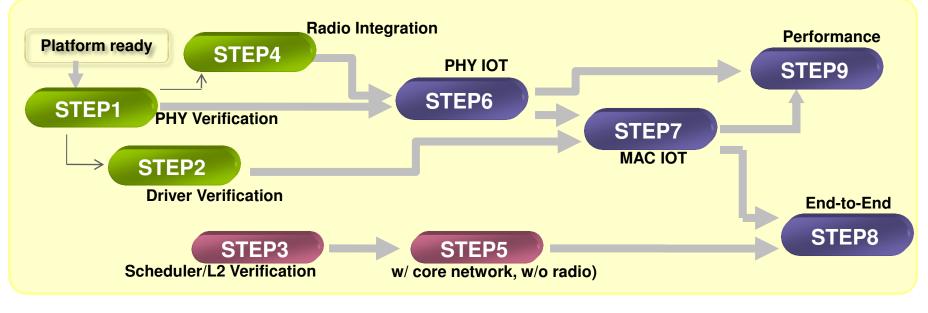
- Example partitioning : LTE eNodeB AP
 - MAC and L1 driver on one core
 - Easy to meet LTE 1ms TTI
 - Quick response to PHY interrupts

🖉 CAVIUM

- RLC, PDCP, Transport on one core
 - Option to partition L2 cache to avoid cache pollution from control processing
- Control processing on one core
- 1 core free
 - Headroom for WiFi and service provider applications
- Small Cell Forum API compliant

Quad-core delivers required headroom and deterministic performance for real-time LTE and other processing

High performance and efficient single-chip small cell base station SoC


Hot Chips 24

Kin-Yip Liu Aug 2012

Page 23

CNF71xx Complete End-to-end Validation

- > STEP1 PHY + Driver S/W + PLT (Physical Layer Test)
- > STEP2 PHY + Driver S/W + Scheduler
- > STEP3 L1 + L2 + L3
- > STEP4 PHY + Modem + Radio
- > STEP5 Core network + Basestation (L2/L3 stacks, S1 I/F)
- > STEP6 IOT (Interoperability Testing) in PHY (PLT + Modem + Radio + UE L1)
- > STEP7 IOT in MAC (w/ UE L1/L2)
- > STEP8 IOT in E2E (w/ UE over full protocol stacks)
- > STEP9 DL/UL Performance Measurements w/ UE

High performance and efficient single-chip small cell base station SoC Hot Chips 24

Page 24

Kin-Yip Liu

Aug 2012

Summary

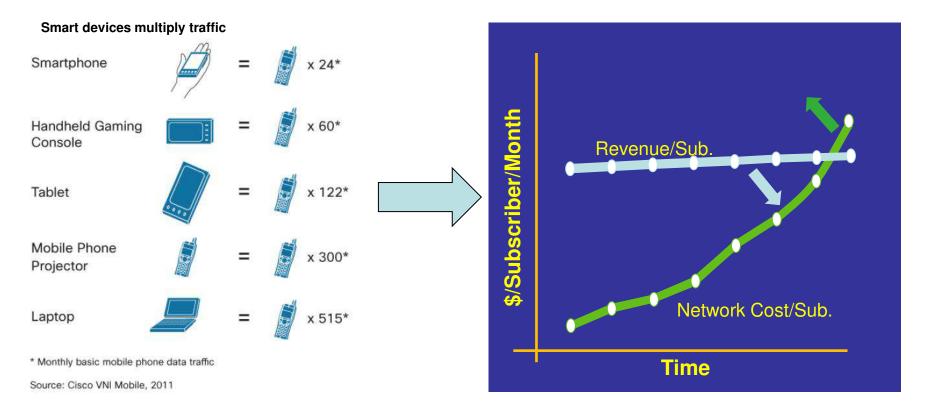
OCTEON Fusion CNF71XX

- High performance "base station on a chip" SoC
 - LTE 20MHz, 150Mbps DL + 150Mbps UL, 2x2 MIMO, 128 users
- OCTEON Fusion = OCTEON multicore + baseband
 - Same OCTEON software for small to macro cells
- End-to-end interoperability and performance verified
- Optimized for Base station designs
 - Delivers deterministic real-time performance, low power, and high integration, with significant compute headroom
 - 4x enhanced & efficient 64-bit (OCTEON MIPS) CPU cores
 - 6x Baseband optimized DSP vector processors
 - Many hardware accelerators
 - Optimized for short latencies and deterministic performance

Page 25

Kin-Yip Liu Aug 2012

Backup

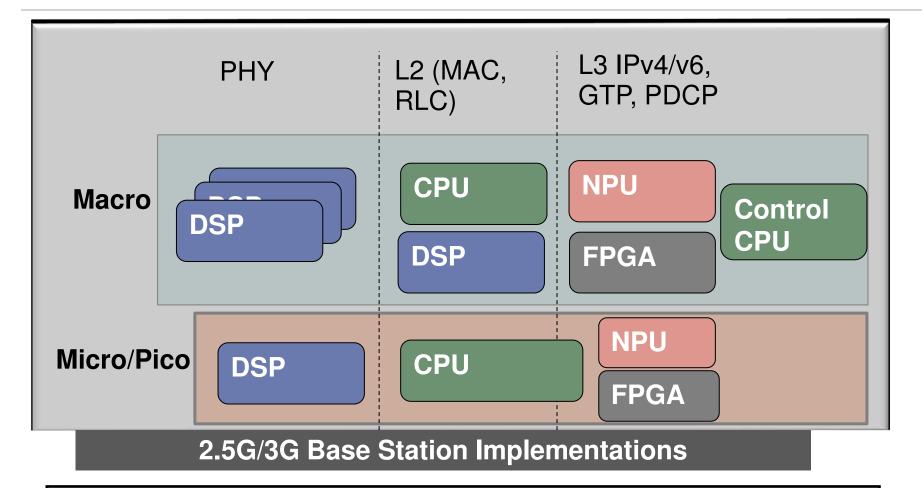

Cavium: Company Summary

- Founded 2001
- NASDAQ IPO (CAVM) 2007
- Locations: US, India, China, TW
- 2011 Revenues : \$259M, +26% YOY
- **5** year CAGR: ~50%
- Profitable with Strong Financials, Zero Debt
- Addressing Multi-billion dollar Networking, Communications, Storage and Digital Home markets.
- MIPS64 and ARM based Multi-core Processor SoCs; Multi-core Search and Security Processors
- All Top Networking, Wireless and Security Vendors use Cavium

Carriers coping with 1000x traffic increase and no extra revenue

Heterogeneous Radio Access Network

- Macro base stations are expensive (CAPEX and OPEX)
- Augment Macro with Small cell base stations to add capacity and coverage cost effectively


High performance and efficient single-chip small cell base station SoC

Kin-Yip Liu Aug 2012

S CAVI

Previous Generation Base Stations

Before Multi-core SoCs became available, Base Station designs required many components, microcode programming on NPU, general purpose <u>CPUs. FPGAs, and many development environments. High complexity</u>