

Reducing Transistor Variability For High Performance Low Power Chips

HOT Chips 24

Dr Robert Rogenmoser Senior Vice President Product Development & Engineering

Copyright © 2012 SuVolta, Inc. All rights reserved.

Overview

- Transistor Variability Limits Chips
 - Impact on Mobile System on Chip (SOC)
 - Limited Low Power Design Techniques
 - Where does Variability come from?
- New Transistor Alternatives to Reduce Variability
 - Deeply Depleted Channel (DDC) technology
 - Silicon Impact
- Outlook
 - Taking advantage of Deeply Depleted Channel (DDC) in Mobile SOC

What is needed in Mobile System on Chip?

- Multiple blocks with different performance requirements
 - Integrated on the same die
 - Different power modes would like to run at different supplies
 - Multiple V_T transistors used to control leakage
 - Single chip solution requires analog integration
- Need co-design of architecture, circuits and transistor technology for best solution

Variability Limits Design & Architecture

- Limited benefit using voltage scaling (DVFS)
 - Cannot overdrive much due to reliability and power restrictions
 - Dynamically lowering voltage limited to 100-200mV
 - Only lowering frequency leaves large leakage power
 - "Run to hold" beats DVFS despite overhead
- Finicky SRAM memories
 - High SRAM V_{MIN} leaves no room for memory voltage scaling
 - Many circuit tricks to improve V_{MIN} and noise margins
 - Design teams moved to dedicated power rail for SRAM
 - Works for CPU difficult in GPU
 - Impacts power network integrity more fluctuations
- Transistor variability limits chips

Transistor Variation Source of Chip Variation

- Global/Systematic/Manufacturing Variation
 - Shifts all the transistors similarly
 - Longer/shorter transistor lengths
 - More (or less) implant energy and dose
 - → Will result in speed/power distribution
- Local/Random Variation
 - Transistor next to each other vary widely
 - Small number of dopants in transistor channel
 - → Random Dopant Fluctuation (RDF)
 - Apparent in threshold voltage mismatch (σV_T)
 - Impacts speed, leakage, SRAM & Analog

- Industry solution: Remove RDF using Undoped Channel
- What is the right silicon roadmap going forward?

5

Transistor Alternatives

FinFET or TriGate

- Promises high drive current
- Manufacturing, cost, and IP challenge
- Doped channel to enable multi V_T

FDSOI

- Showing off undoped channel benefits
- Good body effect, but lack of multi V_T capability
- Restricted supply chain

- DDC Deeply Depleted Channel transistor
 - Straight forward insertion into Bulk Planar CMOS
 - Undoped channel to reduce random variability
 - Good body effect and multi V_T transistors

Deeply Depleted Channel™ (DDC) Transistor

Undoped or very lightly doped region

- Significantly reduced transistor random variability σV_T
 - → Lower leakage
 - → Better SRAM (I_{READ}, lower V_{min} & V_{ret})
 - ➔ Tighter corners
 - Smaller area analog design
- Higher channel mobility (increased I_{eff}, lower DIBL)
 - ➔ Higher speed, improved voltage scaling

\mathbf{V}_{T} setting offset region

Enables multiple threshold voltages

Screening region

- Strong body coefficient
 - Bias bodies to tighten manufacturing distribution
 - → Body biasing to compensate for temperature and aging

Benefits similar to FinFET in planar bulk CMOS

*Example implementation

HotChips 2012

Lower Transistor Variability Reduces Leakage

- Transistor variability is reflected in threshold voltage (V_T) distribution
- Leakage current is exponentially dependent on V_T
- Lower V_T variability (σ V_T) reduces number of leaky low V_T devices
- Power dissipation is dominated by low V_{T} edge of distribution
- Smaller $\sigma V_T \rightarrow$ Less leakage power for digital and memory/SRAM

Lower Transistor Variability Improves Speed

- Nominal (TT) ring oscillator speed expected to be 400ps (A)
 - Equivalent to having many similar critical paths in a chip
 - V_T variation will randomly affect paths within the same die limiting speed to 470ps
- Undoped channel reduces variability and increases mobility (B)
 - 25% faster mean, 30% faster tail due to tighter distribution
- To match performance lower V_{DD} until tails have same speed (C)
 - Large impact on power due square dependence P=CV²f +IV

Lower Variability Improves Transistor Matching

- SRAM memories built using 6-T SRAM cell
 - Smallest transistors on every chip, worst V_T mismatch
 - Higher V_{DD} is required to avoid failures
 - Demonstrated SRAM to V_{min} of 0.425V
- In analog circuits, matching is key
 - Large transistors used to improve relative variability in current mirrors, differential pairs, etc.
 - Better transistor matching allows for
 - Area savings
 - Higher performance
 - Lower power
 - Undoped channel improves
 R_{OUT} → higher gain

65nm Silicon Measurement

SUV/OLTA

HotChips 2012

Better Chips with Body Biasing

- Body Bias to fix systematic variation
 - Speed-up (forward bias FBB) slow parts
 - Cool down (reverse bias RBB) hot parts
 - ➔ Increase manufacturing yield
- Body bias enables multiple modes of operation
 - Active \rightarrow minimize power at every performance
 - Standby → leakage reduction, power gating
- DDC provides 2-4x larger body factor

Half the Power at Matched Performance

- Inverter ring-oscillators (RO) fabricated at process corners
 Baseline @ 1.2V V_{DD} and DDC @ 0.9V V_{DD}
- For each corner, DDC RO is faster and lower power
- Using strong body coefficient to pull in corners
 - Half the power (50% less power) while matching speed

Tighter Manufacturing Corners w/ DDC

- Better process control leads to tighter corners
 - Manufacturing flow further reduces layout effects
- 1 sigma tighter wafer to wafer and within wafer variation for DDC
- Less overdesign as max paths and min (hold) paths are closer
- Faster design closure
 earlier tapeout
 shorter TTM

SUV/OLTA

Voltage Scaling to 0.6V V_{DD}

- Achieve half the speed at 1/6 the power @0.6V V_{DD}
- Use body bias to compensate for temperature and aging
 - Critical for low V_{DD} operation
 - Enable workable design window avoid overdesign

This is HotChips – Go Faster!

- Turbo Mode: DDC achieves over 50% speedup @ 1.2V V_{DD}
 - All corners for DDC run at 580MHz vs 370MHz for baseline

DVFS	Baseline	DDC			
V _{DD}	1.2V	0.6V	0.9V	1.05V	1.2V
Speed	1	0.5	1	1.28	1.56
Power	1	0.17	0.52	1	1.51

Copyright © 2012 SuVolta, Inc. All rights reserved.

28nm and Beyond

- Same performance at 0.75V V_{DD} as baseline at 0.9V V_{DD}
 - 30% lower power
 - Alternatively 25% faster at same voltage
- Even better when using body bias to pull in corners

Applying DDC to Lower Variability in Mobile SOC

- CPU: Single thread performance critical
 - Push frequency by temporarily raising voltage in turbo mode
 - DVFS with body biasing becomes DVBFS
- GPU: High number of cores using small transistors
 - Less overdesign due to lower delay variability
 - Increase parallelism, lower voltage, body bias dynamically for more pixels/Watt
- Lower frequency blocks
 - In addition to high V_T transistors also run at lower voltage and optimal body bias
- Whole chip: Use body bias to adjust for manufacturing variation
 - Take advantage of improved memory and analog performance
 - Lowering variability while compatible with existing bulk planar silicon IP

17

HotChips 2012

Copyright © 2012 SuVolta, Inc. All rights reserved.

Conclusions

- Variability limits chips
 - DDC reduces random variability through its undoped channel
 - DDC's strong body factor can be used to fix systematic variation and compensate for temperature variation
- DDC provides performance kicker from 90nm to 20nm
 - Straight forward integration into existing nodes
 - Compatible with existing bulk planar CMOS silicon IP
 - Use existing CAD flow
- DDC brings back low power tools
 - Large range DVFS
 - Body biasing
 - Low voltage operation
- Taking advantage of reduced variability DDC in design and architecture will lead to next level in mobile SOC

SUV/OLTA®