Floating Point Processing using FPGAs

Michael Parker
Altera Corp
HotChips Conference
August 29, 2012

Agenda

- Stratix V FPGA architecture for Floating Point
- New Approach: "Fused Data Path"
- Throughput, GFLOPs, GFLOPs/W
- FFT
- Cholesky Decomposition
- QR Decomposition
- Computational Accuracy
- Third Party Benchmarking

Stratix V architecture enhancements for floating point

Altera's Variable-Precision DSP Block

Set the Precision Dial to Match Your Application

© 2011 Altera Corporation—Confidential

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

Why Floating Point at 28nm ?

- Floating point density determined by hard multiplier density
- Multipliers must efficiently support floating point mantissa sizes

Multipliers vs Stratix III / IV / V

Floating Point Multiplier Capabilities

- Floating point density determined by hard multiplier density
- Multipliers must efficiently support floating point mantissa sizes

Multipliers vs Stratix III / IV / V

Introducing Fused Datapath

Allows High Performance Floating-Point in FPGAs

New Floating-Point Implementation

Processor:
 Each Operation IEEE754

© 2011 Altera Corporation-Confidential
ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

Vector Dot Product Example

Floating Point Functions

- Math.h
- SIN
- COS - LDEXP
- TAN
- ASIN
- ACOS
- ATAN
- EXP
- LOG
- LOG10

Stratix V Floating Point Performance Benchmarks

Fast Fourier Transform (FFT)
Matrix Inversion algorithms

- Cholesky Decomposition
- QR Decomposition

Altera 28nm high end FPGAs

Part					
Number	LEs / ALUTs	ALUTs / Registers	DSP Multiplier Count	Mbits / M20 memory blocks	14 GBps Transceiver Count
5SGSD3	236 K	$178 \mathrm{~K} / 356 \mathrm{~K}$	1200	$13 / 688$	24
5SGSD4	360 K	$272 \mathrm{~K} / 543 \mathrm{~K}$	2088	$19 / 957$	36
5SGSD5	457 K	$345 \mathrm{~K} / 690 \mathrm{~K}$	3180	$39 / 2014$	36
5SGSD6	583 K	$440 \mathrm{~K} / 880 \mathrm{~K}$	3550	$45 / 2320$	48
5SGSD8	695 K	$525 \mathrm{~K} / 1050 \mathrm{~K}$	3926	$50 / 2567$	48

[^0]
Fast Fourier Transform (FFT) Performance (Mid-size Stratix V, full Floating Point)

FFT MegaCore Device: 5SGSD5	14 Single Precision Floating-point FFT cores, 1,024 pt		
	Usage	Max	\%
Logic utilization	317,332	345,200	92\%
ALUT	259,844	345,200	76\%
Reg	289,781	690,400	42\%
Mem bits	1,954,120	41,246,720	5\%
M20K	1,190	2,014	59\%
18x18 Multipliers	448	3,180	28\%
$\mathrm{f}_{\text {MAX }}$	304 MHz		
Transform time per core	3.4 us (0.24 us aggregate transform time)		

28 nm Stratix V FPGAz ~1W per Floating-Point FFT Core

FPGA verses DSP Processor

Device	$\begin{array}{\|l} \hline \text { Altera Stratix V } \\ \text { 5SGSD8 } \end{array}$	Texas Instruments TMS320C6678
Resources	695 kLEs 50 Mbits block mem 3926 multipliers 48 TRX (14 GSPS)	8 cores, fixed and SP floating point 1.25 GHz
Peak GMACs (16x16 or 18×18)	$\begin{aligned} & 2350 \\ & (3926 \text { multipliers @ } 600 \\ & \text { Mhz) } \end{aligned}$	320 (40 GMACs per core)
Peak GFLOPs Rating (single precision)	1000 (see 1 TeraFlop whitepaper)	160 (20 GFLOPs per core)
1024 length floating point FFT performance (single precision)	3.41 us (1024 clock cycles@ 300 MHz)	$\begin{aligned} & 10.26 \text { us } \\ & (12800 \text { clock cycles @ } \\ & 1.25 \mathrm{GHz}) \end{aligned}$
Aggregate 1024 length FFT transform time	0.17 us (20 FFTs per device)	1.28 us (8 FFTs per device, 1 per core)

The Cholesky Decomposition

- The Least Squares solution for x in $\mathrm{Ax}=\mathrm{b}$
- A must be Hermitian (conjugate symmetric)
- Only lower triangular matrix is needed for calculation
- If A is positive definite, it can be decomposed into lower triangular matrix L and conjugate transpose L' ($\mathrm{A}=\mathrm{L}$ * L^{\prime})
- With Cholesky decomposition, x is solved via forward and backward substitution with decomposed matrices L and L'
- Cholesky decomposition method is more efficient than LU decomposition methods which are suitable for any matrix.

Solving Diagonal Elements

$$
\left.A=\left[\begin{array}{llll}
\mathrm{L}_{11} & 0 & 0 & 0 \\
\mathrm{~L}_{21} & \mathrm{~L}_{22} & 0 & 0 \\
\mathrm{~L}_{31} & \mathrm{~L}_{32} & \mathrm{~L}_{33} & 0 \\
\mathrm{~L}_{41} & \mathrm{~L}_{42} & \mathrm{~L}_{43} & \mathrm{~L}_{44}
\end{array}\right]\left[\begin{array}{cccc}
\mathrm{L}_{11} & \mathrm{~L}_{21} & \mathrm{~L}_{31} & \mathrm{~L}_{41} \\
0 & \mathrm{~L}_{22} & \mathrm{~L}_{32} & \mathrm{~L}_{42} \\
0 & 0 & \mathrm{~L}_{33} & \mathrm{~L}_{43} \\
0 & 0 & 0 & \mathrm{~L}_{44}
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{L}_{11}^{2}
\end{array}\right] \quad \begin{array}{c}
\text { ConjugateSymmetric } \\
\mathrm{L}_{21} \mathrm{~L}_{11} \\
\mathrm{~L}_{31} \mathrm{~L}_{11} \\
\mathrm{~L}_{31} \mathrm{~L}_{21}+\mathrm{L}_{32} \mathrm{~L}_{22} \\
\mathrm{~L}_{41}^{2} \mathrm{~L}_{11} \\
\mathrm{~L}_{41} \mathrm{~L}_{21}+\mathrm{L}_{42} \mathrm{~L}_{22} \\
\mathrm{~L}_{41} \mathrm{~L}_{31}+\mathrm{L}_{42} \mathrm{~L}_{32}+\mathrm{L}_{43} \mathrm{~L}_{3} \\
\mathrm{~L}_{31}^{2}+\mathrm{L}_{32}^{2}+\mathrm{L}_{31}^{2}+\mathrm{L}_{42}^{2}+\mathrm{L}_{43}^{2}+\mathrm{L}_{44}^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& A_{i j}=\sum_{k=1}^{j} L_{j k} * L_{k j}^{\prime} \quad \text { where is is the colum index of the matix } \\
& A_{i j}=\sum_{k=1}^{j} L_{j k} * \operatorname{conj}\left(L_{j k}\right)
\end{aligned}
$$

The first non-zero element, at the top of each column can be obtained by:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{ij}}=\sqrt{\mathrm{A}_{\mathrm{ij}}-\sum_{\mathrm{k}=1}^{\mathrm{j}-1} \mathrm{~L}_{\mathrm{jk}} * \operatorname{conj}\left(\mathrm{~L}_{\mathrm{jk}}\right)} \quad \text { Equation } 1 \\
& \mathrm{~L}_{11}=\sqrt{\mathrm{A}_{11}}
\end{aligned}
$$

Off-diagonal Elements

$$
\left.A=\left[\begin{array}{cccc}
\mathrm{L}_{11} & 0 & 0 & 0 \\
\mathrm{~L}_{21} & \mathrm{~L}_{22} & 0 & 0 \\
\mathrm{~L}_{31} & \mathrm{~L}_{32} & \mathrm{~L}_{33} & 0 \\
\mathrm{~L}_{41} & \mathrm{~L}_{42} & \mathrm{~L}_{43} & \mathrm{~L}_{44}
\end{array}\right]\left[\begin{array}{cccc}
\mathrm{L}_{11} & \mathrm{~L}_{21} & \mathrm{~L}_{31} & \mathrm{~L}_{41} \\
0 & \mathrm{~L}_{22} & \mathrm{~L}_{32} & \mathrm{~L}_{42} \\
0 & 0 & \mathrm{~L}_{33} & \mathrm{~L}_{43} \\
0 & 0 & 0 & \mathrm{~L}_{44}
\end{array}\right]=\begin{array}{|cccc}
\mathrm{L}_{11}^{2} & & \text { ConjugateSymmetric } \\
\mathrm{L}_{21} \mathrm{~L}_{11} & \mathrm{~L}_{21}^{2}+\mathrm{L}_{22}^{2} & \\
\mathrm{~L}_{31} \mathrm{~L}_{11} & \mathrm{~L}_{31} \mathrm{~L}_{21}+\mathrm{L}_{32} \mathrm{~L}_{2} & \mathrm{~L}_{31}^{2}+\mathrm{L}_{32}^{2}+\mathrm{L}_{33}^{2} & \\
\mathrm{~L}_{41} \mathrm{~L}_{11} & \mathrm{~L}_{41} \mathrm{~L}_{21}+\mathrm{L}_{42} \mathrm{~L}_{22} & \mathrm{~L}_{41} \mathrm{~L}_{31}+\mathrm{L}_{42} \mathrm{~L}_{32}+\mathrm{L}_{43} \mathrm{~L}_{33} & \mathrm{~L}_{41}^{2}+\mathrm{L}_{42}^{2}+\mathrm{L}_{43}^{2}+\mathrm{L}_{44}^{2}
\end{array}\right]
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{jj}}=\sum_{\mathrm{k}=1}^{\mathrm{j}} \mathrm{~L}_{\mathrm{ik}} * \mathrm{~L}_{\mathrm{kj}}^{\prime} \quad \text { where } \mathrm{i} \text { and } \mathrm{j} \text { are the row and column indices of the matrix } \\
& \mathrm{A}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{j}} \mathrm{~L}_{\mathrm{ik}} * \operatorname{conj}\left(\mathrm{~L}_{\mathrm{jk}}\right) \quad \text { where } \mathrm{L}_{\mathrm{jk}} \text { is the transpose of } \mathrm{L}_{\mathrm{kj}}
\end{aligned}
$$

Equation 2

Forward Substitution

$$
\begin{aligned}
\text { We now have } \mathrm{L} \text { and } \mathrm{L}^{\prime} \text { thus } & \mathrm{A}^{*} \mathrm{x}=\mathrm{b} \rightarrow \mathrm{~L} * \mathrm{~L}^{\prime} * \mathrm{x}=\mathrm{b} \\
\text { If we define: } & \mathrm{y}=\mathrm{L}^{\prime} * \mathrm{x} \rightarrow \mathrm{~L} \rightarrow \mathrm{y}=\mathrm{b}
\end{aligned}
$$

L is the lower triangular matrix, y and b are column matrices and b is known in the system so y can be solved by forward substitution

$$
\mathrm{y}_{\mathrm{j}}=\frac{\mathrm{b}_{\mathrm{j}}-\sum_{\mathrm{k}=1}^{\mathrm{j}-1} \mathrm{y}_{\mathrm{k}} * \mathrm{~L}_{\mathrm{jk}}}{\mathrm{~L}_{\mathrm{jj}}} \quad \text { Equation 3 }
$$

Note that solving for y is very similar to solving for L shown below

$$
\mathrm{L}_{\mathrm{ij}}=\frac{\mathrm{A}_{\mathrm{tj}}-\sum_{\mathrm{k}=1}^{\mathrm{j}-1} \mathrm{~L}_{\mathrm{ik}} * \operatorname{conj}\left(\mathrm{~L}_{\mathrm{jk}}\right)}{\mathrm{L}_{\mathrm{jj}}}
$$

Equation 2

Backward Substitution

X can be solved by backward substitution, $L^{\prime} * x=y$
Since L^{\prime} is an upper triangular matrix, x has to be solved from the bottom to the top, hence why it's called back substitution

$$
x_{j}=\frac{y_{j}-\sum_{k=j+1}^{V S} x_{k} * L_{j k}^{\prime}}{L_{j j}^{\prime}}
$$

Equation 4

© 2011 Altera Corporation-Confidential

Cholesky Block Diagram

Solve for x in $\mathrm{Ax}=\mathrm{b}$ where A
is conjugate symmetric

Performance and FPGA Resources

Cholesky Decomposition Parameterizable Core using 5SGSD5

Complex Input Matrix Size	Vector Size	ALUTs / Memory blocks / 27x27s	\% ALUTs / \% Memory blocks / \% 27x27s	Latency @ Operating frequency	GFLOPS per core (complex single precision)
30×30	30	$\begin{gathered} 76.5 \mathrm{~K} \\ 793 \mathrm{M} 20 \mathrm{~K} \\ 146 \mathrm{DSP} \end{gathered}$	$\begin{gathered} 22 \% \\ 39 \% \\ 9 \% \end{gathered}$	$\begin{aligned} & 255 \text { us @ } \\ & 250 \mathrm{MHz} \end{aligned}$	21.7
60×60	60	141K 955 M20K 268 DSP	$\begin{aligned} & 41 \% \\ & 47 \% \\ & 17 \% \end{aligned}$	$\begin{aligned} & 328 \text { us @ } \\ & 235 \mathrm{MHz} \end{aligned}$	39.0
240×240	60	$\begin{gathered} 154 \mathrm{~K} \\ 1820 \text { M20K } \\ 268 \text { DSP } \end{gathered}$	$\begin{aligned} & 45 \% \\ & 90 \% \\ & 17 \% \end{aligned}$	$\begin{aligned} & 922 \text { us @ } \\ & 220 \mathrm{MHz} \end{aligned}$	74.2
360×360	90	204K 1411 M20K 391 DSP	$\begin{aligned} & 59 \% \\ & 70 \% \\ & 25 \% \end{aligned}$	$\begin{gathered} 1103 \text { us @ } \\ 190 \mathrm{MHz} \end{gathered}$	91.8
400×400	100	220K 1619 M20K 430 DSP	64% 80% 27%	$\begin{gathered} 1342 \text { us @ } \\ 190 \mathrm{MHz} \end{gathered}$	103

GFLOPs and GFLOPs/Watt

Cholesky Decomposition Parameterizable Core using 5SGSD5

Complex Input Matrix Size	Vector Size	Through-put (Matrix per second)	GFLOPS per core (complex single precision)	Core power consumption as measured using Altera 5SGSD5 eval board	GFLOPs/Watt
30×30	30	472,464	21.7	7.7 W	2.8
60×60	60	118,858	39.0	13.6 W	2.9
240×240	60	8,467	74.2	14.0 W	5.3
360×360	90	1142	91.8	14.7 W	6.2
400×400	100	1182	103	16.1 W	6.4

Complex Cholesky FLOPs $=4 / 3 n^{3}+8 n^{2}$

Competive Results: Nvidia GPU

Cholesky Decomposition (single precision)			
Matrix Size	GFLOPs with LAPACK Library	GFLOPs with Magma Library	GFLOPs with Nvidia OpenCL Library
512×512	20	22	58
768×768	20	39	82
1024×1024	36	57	68
2048×2048	60	117	96

Cholesky FLOPs $=4 \mathrm{~N}^{3} / 3$, where N is matrix dimension

- Results in about 0.25 GFLOPs/Watt (512x512)
- Nividia GTX480 rated at 977 GFLOPs
- Intel Pentium4 3.7GHz rated at 14.8 GFLOPs

High Performance
Relevance Vector Machine on GPUs Depeng Yang, Getao Liang, David Jenkins,Gregory D.
Peterson, and Husheng Li U of Tennessee, Knoxville

More Nvidia Results

	LU Decomposition (single precision)		
Matrix Size	CPU GFLOPs	GPU GFLOPs	GPU speedup
1024×1024	24.2	51.4	3.1
2048×2048	26.5	111.7	5.2
3072×3072	27.5	151.6	6.5
4032×4032	29.96	183.02	7.1
	Using Magma 1.0 RC5 library		

■ Nvidia Fermi Tesla C2050, 1147.0 MHz clock

- AMD Quadro NVS 290, 918.0 MHz clock

MAGMA LAPACK for GPUs
Stan Tomov, Research Director, Innovative Computing Laboratory
Department of Computer Science University of Tennessee, Knoxville

QR Decomposition

- QR Solver finds solution for $A x=b$ linear equation system using QR decomposition, where Q is ortho-normal and R is upper-triangular matrix. A can be rectangular.
- Steps of Solver
- Decomposition:

$$
A=Q \cdot R
$$

- Ortho-normal property:
$Q^{T} \cdot Q=I$
- Substitute then mult by Q^{T} :
$Q \cdot R \cdot x=b$
$R \cdot x=Q^{T} \cdot b=y$
- Backward Substitution:
$Q^{T} \cdot b=y$
solve $R \cdot x=y$
- Decomposition is done using Gram-Schmidt derived algorithms. Most of computational effort is in "dot-product"

Block Diagram

Solve for x in $A x=b$ where A is non－ symmetric，may be rectangular

Performance and FPGA Resources

QR Decomposition Parameterizable Core using 5SGSD5

Complex Input Matrix Size	Vector Size	ALUTs / Memory blocks / 27x27s	\% ALUTs / \% Memory blocks / $\% 27 \times 27 s$	Latency @ Operating frequency	GFLOPS per core (complex single precision)
50×100	50	$\begin{gathered} 105 \mathrm{~K} \\ 230 \text { M20K } \\ 227 \text { DSP } \end{gathered}$	$\begin{gathered} 30 \% \\ 11 \% \\ 14 \% \end{gathered}$	$\begin{aligned} & 45 \mathrm{us} @ \\ & 250 \mathrm{MHz} \end{aligned}$	43.8
100×200	50	$\begin{gathered} 106 \mathrm{~K} \\ 304 \text { M20K } \\ 228 \text { DSP } \end{gathered}$	$\begin{gathered} 31 \% \\ 15 \% \\ 14 \% \end{gathered}$	$\begin{array}{r} 213 \text { us @ } \\ 250 \mathrm{MHz} \end{array}$	64.3
100×200	100	202K 504 M20K 428 DSP	$\begin{aligned} & 58 \% \\ & 25 \% \\ & 27 \% \end{aligned}$	$\begin{aligned} & 173 \text { us @ } \\ & 200 \mathrm{MHz} \end{aligned}$	91.9
250×400	100	$\begin{gathered} 200 \mathrm{~K} \\ 858 \mathrm{M} 20 \mathrm{~K} \\ 428 \mathrm{DSP} \end{gathered}$	$\begin{aligned} & 58 \% \\ & 43 \% \\ & 27 \% \end{aligned}$	$\begin{gathered} 1586 \text { us @ } \\ 200 \mathrm{MHz} \end{gathered}$	106
400×400	100	$\begin{gathered} 203 \mathrm{~K} \\ 1566 \text { M20K } \\ 428 \text { DSP } \end{gathered}$	$\begin{gathered} 59 \% \\ 78 \% \\ 27 \% \end{gathered}$	$\begin{gathered} 4029 \text { us @ } \\ 200 \mathrm{MHz} \end{gathered}$	106

GFLOPs and GFLOPs/Watt

QR Decomposition Parameterizable Core using 5SGSD5

Complex Input Matrix Size	Vector Size $(\mathrm{n} \times \mathrm{m})$	Through-put (Matrix per second)	GFLOPS per core (complex single precision)	Core power consumption as measured using Altera 5SGSD5 eval board	GFLOPs/Watt
50×100	50	31,681	43.8	10.8 W	
100×200	50	5,920	64.3	13.9 W	4.1
100×200	100	8,467	91.9	21.0 W	4.6
400×400	100	310	106	25.2 W	4.4
450×450	75	165	80.0	20.2	4.2

Accuracy, Validation, and summary

Computational error analysis

QR Decomposition Accuracy

Complex Input Matrix Size $(n \times m)$	Vector Size	MATLAB using computer Norm/Max	DSPBA generated RTL Norm/Max		
50×100	50	$5.01 \mathrm{e}-5 / 6.42 \mathrm{e}-6$	$4.87 \mathrm{e}-5 / 6.02 \mathrm{e}-6$		
100×200	100	$2.3 \mathrm{e}-5 / 1.24 \mathrm{e}-6$	$1.68 \mathrm{e}-5 / 9.97 \mathrm{e}-7$		
400×400	100	$8.8 \mathrm{e}-5 / 4.81 \mathrm{e}-6$	$7.07 \mathrm{e}-5 / 4.03 \mathrm{e}-6$		
		using Frobenius norm	$\\|\mathrm{E}\\|_{\mathrm{F}}=\sqrt{\sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{j}=1}^{m}\left\|\mathrm{e}_{\mathrm{ij}}\right\|^{2}}$		

Cholesky Decomposition results are similar

[^1]
Summary

- High performance floating point designs can be built using FPGAs
- High density of $27 \times 27,36 \times 36,54 \times 54,72 \times 72$ multipliers available at 28 nm
- New floating point toolflow reduces routing density to sustainable level
- Availability of optimized math.h library of floating point functions
- FPGA Fixed point parellelism performance benefits now carry over into floating point
- Best in class GFLOPs / Watts
- Real-world, not marketing, floating point benchmarks for comparison

[^0]: © 2011 Altera Corporation—Confidential
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

[^1]: © 2011 Altera Corporation—Confidential
 ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS \& STRATIX are Reg. U.S. Pat. \& Tm. Off. and Altera marks in and outside the U.S.

