

Visconti2 - A Heterogeneous Multi-Core SoC for Image-Recognition Applications

Masato Uchiyama, Hideho Arakida, Yasuki Tanabe, Tsukasa Ike, Takanori Tamai, Moriyasu Banno

Toshiba Corporation, Kawasaki, Japan

Copyright 2012, Toshiba Corporation.

Outline

Background

Visconti2

- Overview of architecture and chip
- CoHOG accelerator

(Co-occurrence Histograms of Oriented Gradients)

Real Applications

- Monocular Pedestrian Detection
- Hand Gesture User Interface (UI)
- Conclusion

Background: Targets of Visconti2

Image recognition technology \Box A variety of products

- Visconti2 designed for
- Automotive : Advanced Driver Assistance Systems (ADAS)
- Consumer
- Industry

Background: Requirements & Approach

High accuracy of object recognition

CoHOG (Co-occurrence Histograms of Oriented Gradients)
One of the most accurate image feature descriptors
Toshiba original (T.Watanabe et al., Proc. PSIVT 2008, pp.37-47)

by real-time execution

- High performance
 - E.g. Monocular Pedestrian Detection using CoHOG
 - → 3,983ms/frame on 1GHz CPU 40x speedup required
- Low power consumption
 - Cooling without fan (< 1W in typical condition)

Hardware accelerators for frequently used tasks which are performance bottlenecks (CoHOG, etc.)

Outline

Background

Visconti2

- Overview of architecture and chip
- CoHOG accelerator
 - (Co-occurrence Histograms of Oriented Gradients)
- Real Applications
 - Monocular Pedestrian Detection
 - Hand Gesture User Interface (UI)
- Conclusion

Chip Architecture

Memory Bandwidth DDR2: Peak 2GB/sec On-chip RAMs: 2GB/sec x 4ch.

Multi-core Subsystem

- Four homogeneous VLIW cores with 256KB L2\$
 - 3-way VLIW core
 - RISC core + 2-way SIMD coprocessor (ISSCC '08[S.Nomura])
 - Additional 64KB data RAM and DMA controller
 - Exploit multi-grain parallelism
 - Application, task and thread level parallelism: by four cores
 - Data level parallelism: by SIMD coprocessor

Hardware Accelerators

- Six accelerators implemented
 - CoHOG accelerator
 - <u>Matching accelerator</u>
 - <u>Histogram accelerator</u>
 - Affine accelerator
 - <u>Two Filter accelerators</u>

Realizing "High performance with low power consumption"

SHIBA

Leading Innovation >>>

We adopted "Highly parallelized" approach rather than "High clock frequency" approach.

CoHOG based Recognition

 Extension to widely-used HOG (Histogram of Oriented Gradients)

Different on CoHOG

2. Calculate co-occurrence histogram

Leading Innovation >>>

CoHOG Accelerator

400,000 ROIs/sec is enough for our target applications.

Features and Chip Micrograph

	-			
Process	40nm	DDR2 PHY	DDR2 PHY	
Chip Size	44.54mm ²			
Supply Voltages		Video Out I/F	On-chip RAM	
Core	1.1V			
DDR2/PCle PHY	1.8V	CoHOG Affine		
I/O	3.3V	Histogram Matching	Video In I/F	
Performance		Filter Accelerator		
Total peak performance	464GOPS	#1	Multi-core	
Power efficiency	620GOPS/W	Accelerator	Processor	
(Y.Tanabe et al., Proc. ISSCC 2012, pp.222-223)				

Outline

- Background
- Visconti2
 - Overview of architecture and chip
 - CoHOG accelerator

(Co-occurrence Histograms of Oriented Gradients)

Real Applications

- Monocular Pedestrian Detection
- Hand Gesture User Interface (UI)

Conclusion

Real Applications

Monocular Pedestrian Detection

- System cost is lower than using stereo camera.
- Huge computations are required.
 (Sliding window CoHOG recognition is used instead of depth estimation based on stereo matching with stereo camera.)

Hand Gesture UI

- <u>Hand recognition</u> is applied to many ROIs (sliding window CoHOG recognition).
- High frame rate is required.

Command examples

move

select

Alert

and/or

Braking

Pedestrian Detection : Processing Flow

Pedestrian Detection : CoHOG Recognition

- A number of scaled images are same generated by Affine accelerator. template
 - A template is used to match with the scaled images:
 - To detect pedestrians in different distances
 - To detect pedestrians with different body height
- Sliding window CoHOG recognition
 → 650 ROIs / image @ VGA
- Performance requirement of CoHOG recognition
 - 500 (sliding window ROIs on average)
 - **x** 20 (scaled images)
 - **x** 10 (frame / sec)

Leading Innovation >>>

= 100,000 ROIs/sec

< CoHOG accelerator : 400,000 ROIs/sec

Pedestrian Detection : Execution Time

Execution time per frame

Real Applications

Monocular Pedestrian Detection

- System cost is lower than using stereo camera.
- Huge computations are required.
 (Sliding window CoHOG recognition is used instead of depth estimation based on stereo matching with stereo camera.)

Hand Gesture UI

- <u>Hand recognition</u> is applied to many ROIs (sliding window CoHOG recognition).
- High frame rate is required.

Command examples

move

Alert

and/or

Braking

Hand Gesture UI : Processing Flow

- Switching between two processing modes
 - Detection mode : sliding window hand recognition @ 15fps
 - Tracking mode : trajectory recognition @ 30fps

Hand Gesture UI : Execution Time

SHIBA

Leading Innovation >>>

Execution time per frame in detection mode

Evaluation of Power Consumption

Monocular Pedestrian Detection

- Chip total : 870mW
 - Core (1.1V) : 356mW
 - PHY(1.8V) : 460mW
 - I/O (3.3V) : 54mW

Hand Gesture UI

- Chip total : 891mW
 - Core (1.1V) : 363mW
 - PHY(1.8V) : 472mW
 - I/O (3.3V) : 56mW

< 1W : Cooling without fan

Typical condition: Process center sample, 25ºC

Evaluation board and power measurement environment

Conclusion

 Visconti2 is a heterogeneous multi-core SoC dedicated for image recognition.

Visconti2 achieves:

- Accurate recognition
 - CoHOG based image recognition is implemented.
- High performance with low power consumption
 - We implemented six highly parallelized hardware accelerators.
 - Under 1W power consumption is achieved. (typical condition)
- Two real applications on Visconti2 using HW accelerators are demonstrated.
 - Monocular Pedestrian Detection
 - Hand Gesture User Interface

Visconti2 status: ES ready

http://www.semicon.toshiba.co.jp/eng/product/assp/selection/automotive/infotain/visconti/

TOSHIBA Leading Innovation >>>